

Welcome zenontc: Account | Notifications | ENERGY | Contacts | Help | Sign

Tracking GHG Emissions from Municipal **Operations**

Announcements

More info on each initiative can be found in the rotating images at sustainablejersey.com

- Certification Timeline Changes
 - Municipal Samantha, info@sustainablejersey.com
 - Schools Veronique, lambertv@tcnj.edu
- Free Municipal Tech Coaching Lauren, skowronl@tcnj.edu
- Census Response Samantha, info@sustainablejersey.com

Upcoming Energy Webinars

Community Energy Efficiency Outreach Made Easier with Sustainable Jersey Toolkits!
Tuesday, May 12, 2020, 1:00 PM - 2:30 PM

Case Studies from New Jersey's Community Solar Energy Pilot Program Year 1

Wednesday, May 20, 2020, 1:00 PM - 2:30 PM

Energy Efficiency Outreach Green Team Trainings
Virtual trainings for Jaunching commercial /residential

Virtual trainings for launching commercial/residential energy efficiency outreach campaign.

Sustainable Jersey will be launching new guidebooks, toolkits, and resources to help make completing energy actions easier.

Today's Speakers

Zenon Tech-Czarny, Sustainable Jersey Research and Project Specialist

Outline/Overview

- Why track GHG emissions from municipal operations?
- Reducing GHG emissions from municipal operations
- Municipal Carbon Footprint
- Energy Tracking & Management and ENERGY STAR Portfolio Manager
- Weather normalization
- Comparing two years
- Calculating change in municipal GHG emissions

Why track GHG emissions from Municipal Operations?

- Sustainable Jersey's Gold Star Standard in Energy
- It's good practice!

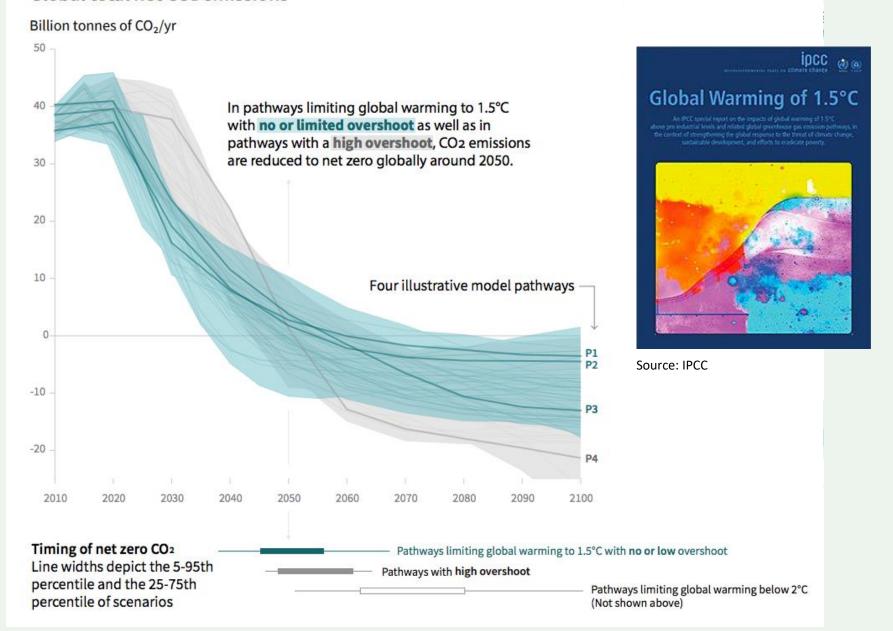
"You can't manage what you don't measure...

...And you can't measure what you don't manage"

Gold Star Standard in Energy

Municipal Operations

3.6% annual reduction in GHG emissions from baseline year


- Municipal buildings
- Municipal Utility Authority
- Streetlights & traffic signals
- Fleet

Community Wide

- Make Your Town EV Friendly
- Public Electric Vehicle Chargers
- Make Your Town Solar Friendly
- Community Led Solar Initiatives
- Residential EE Outreach
- Commercial EE Outreach

Global total net CO2 emissions

Municipal Program Energy Actions

	Energy Efficiency	Renewable Energy	Alternative Fuel Vehicles (AFVs)
Municipal Operations	 Energy Tracking and Management Energy Efficiency for Municipal Facilities 	 On-Site Solar Energy On-Site Geothermal On-Site Wind Energy Purchase Renewable Energy 	Fleet InventoryGreen Fleet TargetPurchase AFVs
Community Energy Use	 Residential Energy Efficiency Outreach Commercial Energy Efficiency Outreach 	 Community Choice Aggregation (R-GEA) Make Your Town Solar Friendly Community-Led Solar Initiatives 	 Make Your Town EV Friendly Public EV Chargers

www.njcleanenergy.com/muni

Newsletters | Contact Us | Site Map

Search

HOME

RESIDENTIAL

COMMERCIAL, INDUSTRIAL, LOCAL GOV & MULTIFAMILY

RENEWABLE ENERGY

COMMERCIAL, INDUSTRIAL, LOCAL GOV. & MULTIFAMILY

- **V PROGRAMS**
 - NJ SMARTSTART BUILDINGS
 - PAY FOR PERFORMANCE
 - MULTIFAMILY PROGRAM

COMBINED HEAT AND POWER -

LOCAL GOVERNMENT ENERGY
AUDIT

LARGE ENERGY USERS PROGRAM

ENERGY SAVINGS IMPROVEMENT PROGRAM (ESIP)

DIRECT INSTALL

COMMUNITY ENERGY PLANS

BENCHMARKING

OIL, PROPANE, MUNICIPAL & COOP ELECTRIC CUSTOMERS

DER MICROGRID FEASIBILITY
STUDIES

Home » Commercial & Industrial

Local Governments, Schools and Non-Profits

Throughout New Jersey, residents and business owners are looking for ways to save energy and the environment - local governments and schools are no exception. *New Jersey's Clean Energy Program* provides financial incentives for energy efficiency through a number of initiatives directed at local government facilities. Take a leadership role in energy efficiency for your municipality or school today!

Do you want to see how your building's energy use compares to others like it?

BENCHMARKING

Benchmarking is a free service that provides a performance assessment and valuable information on how to get your project started. Benchmarking is available to hospitals and other healthcare facilities, municipalities.

Program Updates

- 2020 Clean Energy Conference
- Enhanced Rebates Announced
- Summary of FY20 Program Changes
- New Jersey Clean Energy Learning Center

Other updates posted.

Program Literature

Applications and Brochures

Download the Latest Program Materials

Find a Trade Ally

Select a contractor for an energy efficient upgrade today!

Success Stories

Roxbury Township Public Schools

Kennedy Elementary Shows its Smarts on Energy Efficiency

Utility Incentive Programs

- Incentives vary by utility
- Contact your local natural gas and electric utilities

MUNICIPAL OPERATIONS: GHG REDUCTION STRATEGIES AND GOAL

STRATEGIES AND ACTIONS TO ACHIEVE GOLD	TIME TO IMPLEMENT	IMPACT ON MUNICIPAL GHG
Buildings and Street Lighting Efficiency		12-19%
Implement Energy Efficiency Measures	2-4 years	10-17%
Energy Tracking & Management	1 year	2%
Renewable Energy Generation		4-38%
On-Site Solar System	1-2 years	1-35%
On-Site Wind System	3-5 years	<1%
Geothermal System	2-3 years	3%
Greening the Municipal Fleet		15-18%
Purchase Alternative Fuel or Efficient Vehicles	3-7 years	4%
Convert Vehicles to Alternative Fuel	1 year	2%
Trip Optimization Software	1 Year	3-6%
Proper Vehicle Maintenance	1 Year	6%
Driver Training_	1 year	3%
Estimated Impact from Reduction Strategies		31-75%




FIGURE 8.

Electricity Generation, Least Cost Scenario

Source: NJ Energy Master Plan

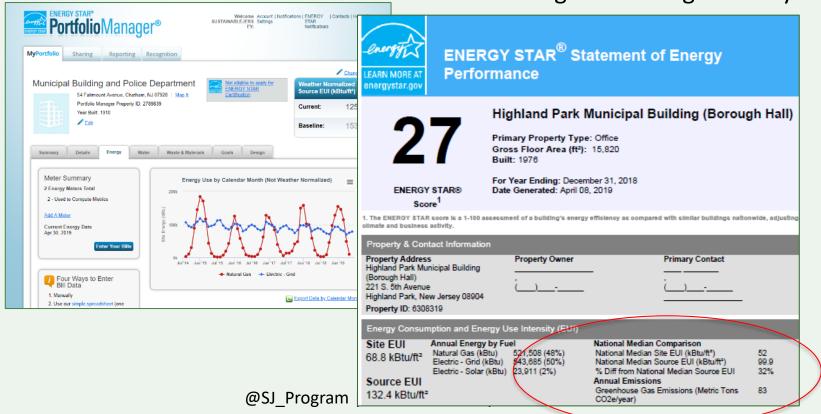
Municipal Carbon Footprint

Direct Lights & Traffic Signals S.716 S316 S239.728 28.23486 0.008586 0.0000316 0.0000316 0.0000316 0.0000000000000000000000000000000000	Municipality:			complete ap	olicable ce	lls highlighted	l in yellaw, qu	rey cells cont.	ain formula:	7
VIEP 2: Scope Temissions from Stationary Fuel Consumption in Baseline Year	TED 4 F . I.E.I. D. D. D. D.									
Columbia		2010			l l					
CO2	aseline i ear Jelected:	2010								
Unitoipal Operation - Natural Gas Total Therm Converted to Emissions (Metric Tons Co2) Co2	TEP 2: Scope 1 Emissions from Stati	ionary Fuel (Consumption in	n Baseline Ye	ar					
Lumicipal Operation - Natural Gas Total Therm Million BTU Sales Sale										
Judition of Seculities 28.486 Ze42 E01 2692 E01 309355 T251 M0.33964 0.03323513 0.00026426 0.07814955 140.74871 James & Vastewater Treatment acilities 0 0 0 0 0.0005510 0.0005510 0.0005410 <	funicipal Operation - Natural Gas	Total Therm		Emissions	Tons	(Metric	Tons	(Metric	Tons	(Metric Tons
		26,426	2642.601							140.74871
Manual Gas Total 1972 19										28.313777
Manual Cas Total 3174.01 3174.201 3174.201 3176.25 453 885.571 0.0557871 0.00037742 0.00037										
COZE										
Uniticipal Operation - Heating Oil Total Gallor Million BTU (lbs) CO2e Tons Ton	/Vatural bas Total	31/42.01	3114.201	377535.453	168.5177	יוטויז פאוטיטי	0.3357757	0.00031742	0.034537	163.062934
Step Color Color	lunininal On analisa - Hankina Oil	T-t-LC-ll-	converted to	Emissions	Tons	(Metric	Tons	(Metric	Tons	
Interest										_
Aller & Wastew ater Treatment Facilities										
Column C										
STEP 3: Scope 2 Emissions from Purchased or Acquired Electricity in Baseline Year										
CO2e Emissions (Metric Tons CO2e) Total Kwh (Metric Tons) CO2e Emissions (Metric Tons) CO2e CO2e Emissions (Metric Tons) CO2e CO2e Emissions (Metric Tons) CO2e		0	0	0	0	0	0	0	0	
Lunicipal Operation - Electricity										
Unitional Operation - Electricity	IEP 3: Scope 2 Emissions from Purc	chased or Ac	equired Electri	city in Baselir	e Year					
A				Emissions	(Metric					
140.82768 140.										
State & Wastewater Treatment Facilities										
CD2										140.82768
10.22.413 10.2										
*includes CO2. CH4 and N20 emissions preconvented to carbon dioxide equivalents (CO2e) Municipal Operation - Vehicle missions CO2 Emissions by fuel usage Motor Gasoline (per gallon) Motor Gasoline										600 4510
CO2 CO2 CO2 CO2 CO2 CO3	Liednický rotar	N224N	N22.4N			l Vamissiaas asaa	aaroarbad ba a ar	dana dineida aare	ivalants (CC)2	
CO2				"TOIGGES COD	Crittana ile	o ennissionis prec	orrecited to car	Dorraioniae equ	Tuest Roy (COL	-;·
Municipal Operation - Vehicle Total Fuel Units	TEP 4: Scope 1 Emissions from Mobi	ile Fuel Com	bustion in Bas	eline Year						
Municipal Operation - Vehicle Total Fuel Units										
Diesel Fuel (per gallon)	missions		Emissions (lbs/fuel	Emissions	(Metric Tons					
Compressed Natural Gas (per 1000 cubic feet 0 120.36 0 0 0										
CH4										
Municipal Operation - Vehicle missions CH4 and N20 emissions by mileage Total Mileage 247842 0.008223546 0.20558866 0.00317615 0.9464926 OPERATOR OF TOTALS Total Emissions (Metric Tons CO2e) Total CO2e) Total Emissions (Metric Tons CO2e) Total CO2e) Total Emissions (Metric Tons CO2e)	ompressed Natural Gas (per 1000 cubic feet	0	120.36	0	0					
Vehicle Fuel Total	missions					Emissions (Metric	(Metric Tons	Emissions (Metric	(Metric Tons	
Vehicle Fuel Total 475775.368 215.8082 0.00822355 0.2055887 0.00317615 0.346433 216.360314 TOTALS Total Emissions (Metric Tons CO2e)	Totals from Markshaat 3 "Valvinia CH4 8 N2C	7"	247842			0.008223546	0.20558866	0.00317615	0.9464926	_
TOTALS Total Emissions (Metric Tons CO2e)			241042							
Total Emissions (Metric Tons CO2e)	Vehicle Fuel Total			475775,368	215.8082	0.00822355	0.2055887	0.00317615	0.946493	216.360314
Total Emissions (Metric Tons CO2e)	OTAL S		<u> </u>							
IUNICIPAL CARBON FOOTPRINT 8110.7547	UINLU									
										LUZEJ

Jala III Dide IIIay	require adjustment	basea on municipa	ai billing cycles			
Municipality:						
acility Location:	Borough Hall					
Annual Electricity	Usage					
Meter#or Account#:	6308319					
Month of Usage	Per Bill Date Range of Usage	Per Bill Electricity usage (kWh)	# of days in billing period*	per day	₽ of days in 2018	Value for 2018
anuary	12/31/17 - 1/30/18	11950	30	398.33	30	11950
ebruary	1/31/18 - 2/28/18	10267	30	342.23		10267
/larch	3/1/18 - 3/31/18	11304	31	364.65		11304
pril	4/1/18 - 4/30/18	9560	30	318.67		9560
lay	5/1/18 - 5/31/18	11672	31	376.52		11672
une	6/1/18 - 6/30/18	14741	31	475.52	31	14741
uly	7/1/18 - 7/31/18	18709	30	623.63		18709
ugust	8/1/18 - 8/31/18	17662	31	569.74		17662
September	9/1/18 - 9/30/18	17468	30	582.27		17468
ctober)	10/1/18 - 10/31/18	12517	31	403.77		12517
lovember	11/1/18 - 11/30/18	11102	29	382.83	29	11102
ecember	12/1/18 - 12/31/18	12001	31	387.13	31	12001
	Total KWhs: Total MWhs:	158953 158,953				

NOTE: if your facility is not separately metered for natural gas usage you should NOT report estimated natural gas usage

Month of Usage	Per Bill Date Range of Usage	Meter # 1	# of days in billing period*	per day	days in 2007	Value for 2018	
January	12/31/17 - 1/30/18	1341.99	30	44.73	30	1342	
February	1/31/18 - 2/28/18	875.87	30	29.20	30	876	
March	3/1/18 - 3/31/18	825.66	31	26.63	31	826	
April	4/1/18 - 4/30/18	703.5	30	23.45		704	
May	5/1/18 - 5/31/18	114.28	31	3.69	31	114	
June	6/1/18 - 6/30/18	0	31	0.00	31	0	
July	7/1/18 - 7/31/18	0	30	0.00	30	0	
August	8/1/18 - 8/31/18	0	31	0.00	31	0	
September	9/1/18 - 9/30/18	0	30	0.00	30	0	
October	10/1/18 - 10/31/18	5.23	31	0.17	31	5	
November	11/1/18 - 11/30/18	430.73	29	14.85		431	
December	12/1/18 - 12/31/18	1000.37	31	32.27	31	1000	
							7

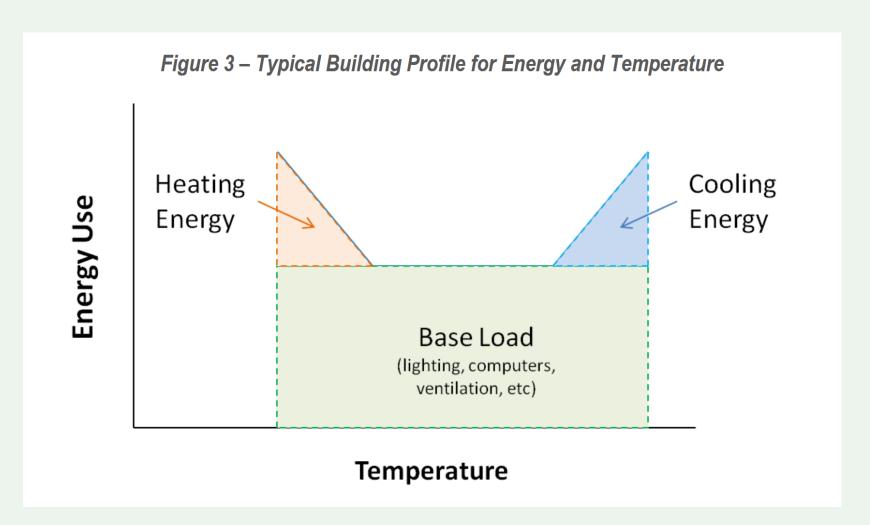

Energy Tracking and Management

For base 10 points

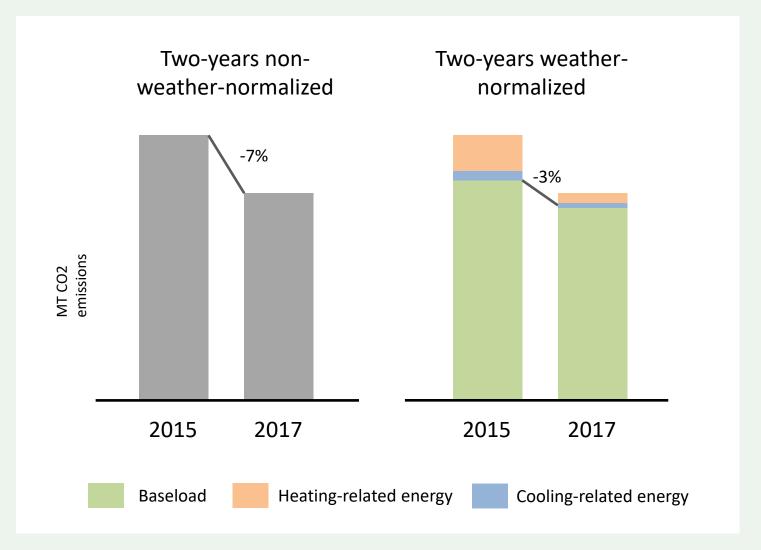
- Building portfolio
- Most recent <u>twelve-months</u> of energy use data for all buildings

For additional 10 points

- Benchmarking report for each building in the inventory
- Demonstrate <u>ongoing</u> Energy Tracking and Management system



Welcome zenontc: Account | Notifications | ENERGY | Contacts | Help | Sign Settings STAR Out Notifications



Weather Normalization

https://portfoliomanager.energystar.gov/pdf/reference/Climate%20and%20Weather.pdf

Comparing two years

Property Name	Year Ending	Natural Gas Use (therms)	Weather Normalized Site Natural Gas Use (therms)	Electricity Use - Grid Purchase (kWh)	Weather Normalized Site Electricity (kWh)	Site Energy Use (kBtu)	Weather Normalized Site Energy Use (kBtu
-		· •	▼	▼	•	▼	·
Building 1	12/31/2015	6391.829236	6409.2	80637.4	80637.4	914317.8	916053.2
Building 2	12/31/2015	6931.709277	6954.8	354260.3	354260.3	1901907.4	1904213
Building 3	12/31/2015	10977.73042	11205.2	768998.6	768998.6	3721596.6	3744338.8
		24301.26893	24569.2	1203896.3	1203896.3	6537821.8	6564605
Building 1	12/31/2017	5186.456198	5787.3	76485.2	75164	779613	835194.6
Building 2	12/31/2017	6506.46407	7121	314771.6	317280.2	1724647.1	1794661.7
Building 3	12/31/2017	9725.176684	11094.7	765584.4	765584.4	3584692.1	3721648.7
		21418.09695	24003	1156841.2	1158028.6	6088952.2	6351505
		-11.86%	-2.30%	-3.91%	-3.81%	-6.87%	-3.25

Calculating change in municipal GHG emissions

- I. What to track?
- II. Buildings

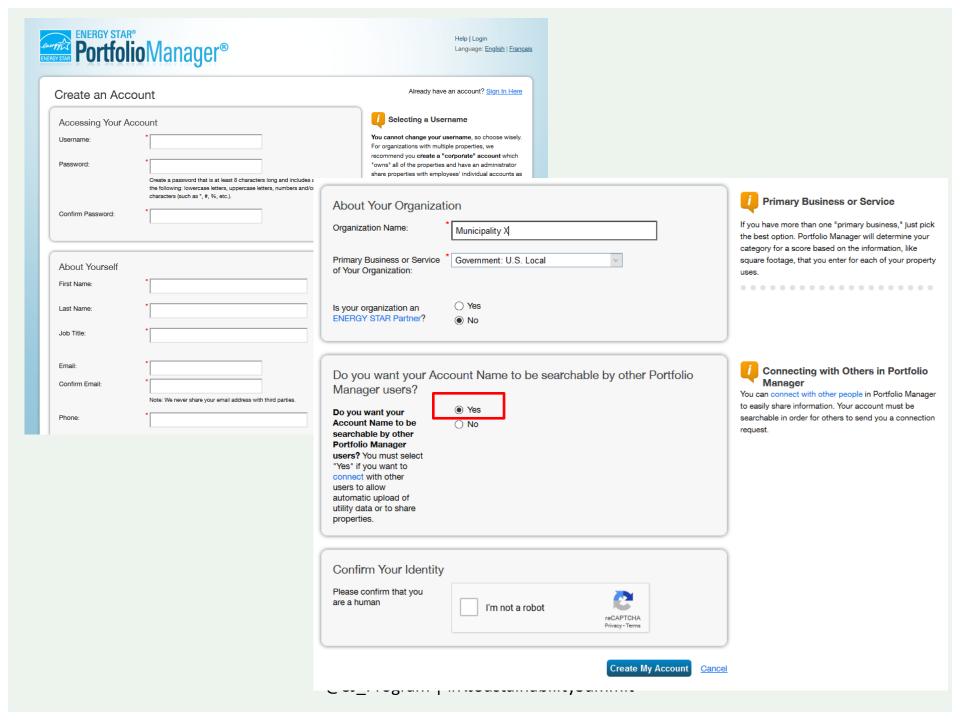
Use ENERGY STAR Portfolio Manager (ESPM)

- a. track building energy usage
- b. export weather-normalized data
- III. Fleet
- IV. GHG Emissions Change Calculator
 - a. baseline year
 - b. comparison year

I. What to track?

- 1. Scope municipal operations to be tracked
 - a. Which buildings?
 - b. Municipally owned wastewater treatment plant
 - c. Municipally owned streetlight & traffic signals
- 2. Select years to compare
 - a. baseline year
 - b. comparison year
- 3. Gather data
 - a. Utility bills
 - b. Fleet data

Calculating change in municipal GHG emissions


- I. What to track?
- II. Use ENERGY STAR Portfolio Manager to track building energy usage and export weather-normalized data.
- III. Complete Fleet Inventory
- IV. Calculate percent change in GHG emissions from the baseline year to the comparison year.

Buildings

Fleets

GHG Change Calculator

Set up a Property: Let's Get Started!

Properties come in all shapes and sizes, from a leased space in a large office building, to a K-12 school with a pool, to a large medical complex with lots of buildings. Since there are so many choices, Portfolio Manager can walk you through getting your property up and running. When you're done, you'll be ready to start monitoring your energy usage and pursue recognition!

Your Property Type

We'll get into the details later. For now, overall, what main purpose does your property serve?

Office ~

Learn more about Property Types.

Your Property's Buildings

How many physical buildings do you consider part of your property?

- O None: My property is part of a building
- One: My property is a single building
- O More than One: My property includes multiple buildings (Campus Guidance)

How many?

Your Property's Construction Status

Is your property already built or are you entering this property as a construction project that has not yet been completed?

- Existing: My property is built, occupied and/or being used. I will be using Portfolio Manager to track energy/water consumption and, perhaps, pursue recognition.
- Design Project: My property is in the conceptual design phase (pre-construction); I will be
 using Portfolio Manager to evaluate the energy efficiency of the design project.
- Test Property: This is not a real property. I am entering it to test features, or for other purposes such as training.

To set up a property, you'll need information such as gross floor area and

operating hours.

Not sure what kind of property you are? Because we focus on whole building benchmarking, you want to select the property type that best reflects the activity in the majority of your building. Don't worry if you have other tenants with different business types, Just select the main activity.

.

Test Properties

You may want to enter a property into Portfolio Manager that isn't actually a "real" property, either to familiarize yourself with features or maybe to train other people. By telling us this a "Test" property, we can give the option of including this property in your portfoliolevel metrics, charts and table or not, depending what your needs are. This can be configured on your Account Settings.

Get Started! Cancel

Set Up a Property: Basic Property Information Tell us a little bit more about your property, including a name that you will use to look up your property and its address. **About Your Property** Name: Municipal Building Country: United States Street Address: 10 Main St City/Municipality: Ewing County: Mercer State/Province: New Jersey Postal Code: 08628 Year Built: 1970 Gross Floor Area: 3,000 Sq. Ft. 🔻 Temporary Value Gross Floor Area (GFA) is the total property floor area, measured from the principal exterior surfaces of the building(s). Do not include parking. Details on what to include. Irrigated Area: Sq. Ft. 🗸 Occupancy: % Property Photo Browse... No file selected. (optional): Select an image file on your computer with the format type of .jpg, .jpeg, .png or .gif; photos will be resized to fit a space of 2.78 inches wide x 2 inches tall.

▼ Building Use / Edit Name

Office refers to buildings used for the conduct of commercial or governmental business activities. This includes administrative and professional offices.

Gross Floor Area (GFA) should include all space within the building(s) including offices, conference rooms and auditoriums, break rooms, kitchens, lobbies, fitness areas, basements, storage areas, stairways, and elevator shafts.

If you have restaurants, retail, or services (dry cleaners) within the Office, you should most likely include this square footage and energy in the Office Property Use. There are 4 exceptions to this rule when you should create a separate Property Use:

- If it is a Property Use Type that can get an ENERGY STAR Score (note: Retail can only get a score if it is greater than 5,000 square feet)
- . If it accounts for more than 25% of the property's GFA
- . If it is a vacant/unoccupied Office
- . If the Hours of Operation differ by more than 10 hours from the main Property Use

More on this rule.

Property Use Detail	Value	Current As Of	Temporary Value
☆ Gross Floor Area	* 3,000 Sq. Ft. ~	1/1/1970	
★ Weekly Operating Hours	65 Use a default	1/1/1970	
Number of Workers on Main Shift	6.9	1/1/1970	
Number of Computers	6 Use a default	1/1/1970	
Percent That Can Be Heated	50 % or more Use a default	1/1/1970	
☆ Percent That Can Be Cooled	50 % or more	1/1/1970	

This Use Detail is used to calculate the 1-100 ENERGY STAR Score.

Welcome zenontc: Account | Notifications | ENERGY | Contacts | Help | Sign Settings STAR Out Notifications

MyPortfolio

Sharing

Reporting

Recognition

Municipal Building

10 Main St, Ewing, NJ 08628 | Map It
Portfolio Manager Property ID: 10907637

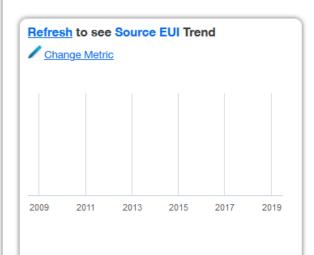
Year Built: 1970

Edit

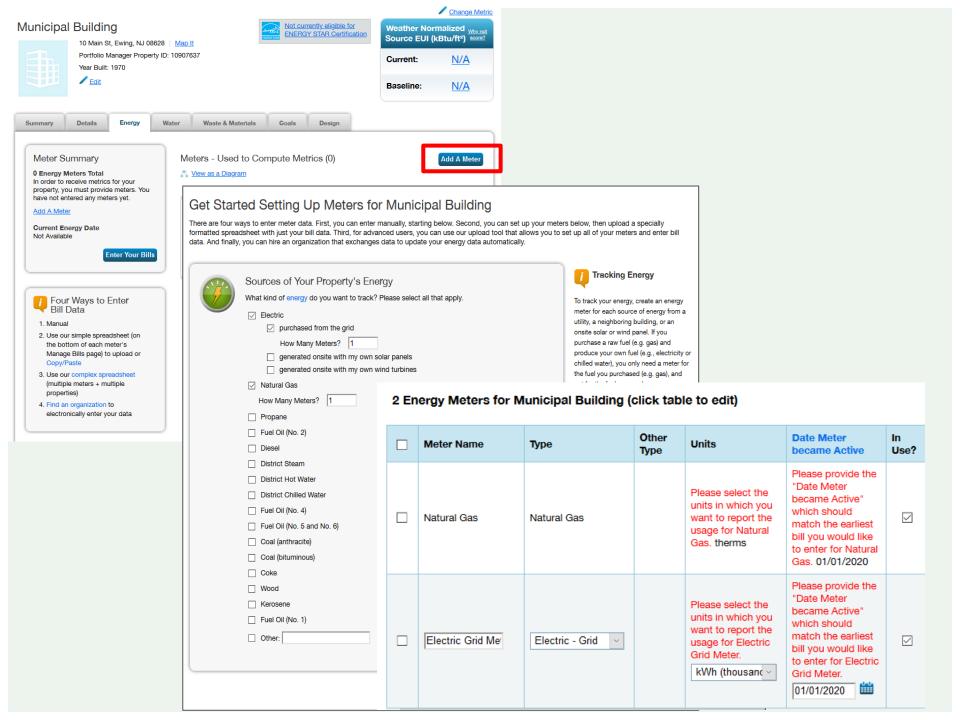
Weather Normalized Why not Source EUI (kBtu/ft²)

Change Metrics

Change Time Periods


Current:

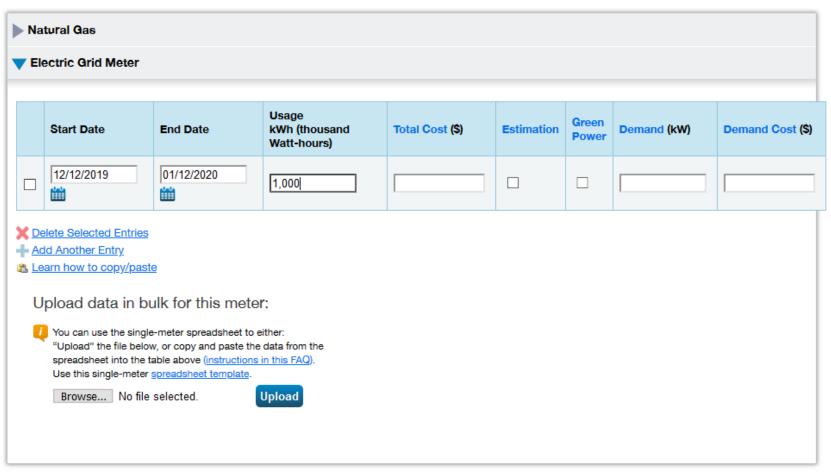
N/A


Baseline:

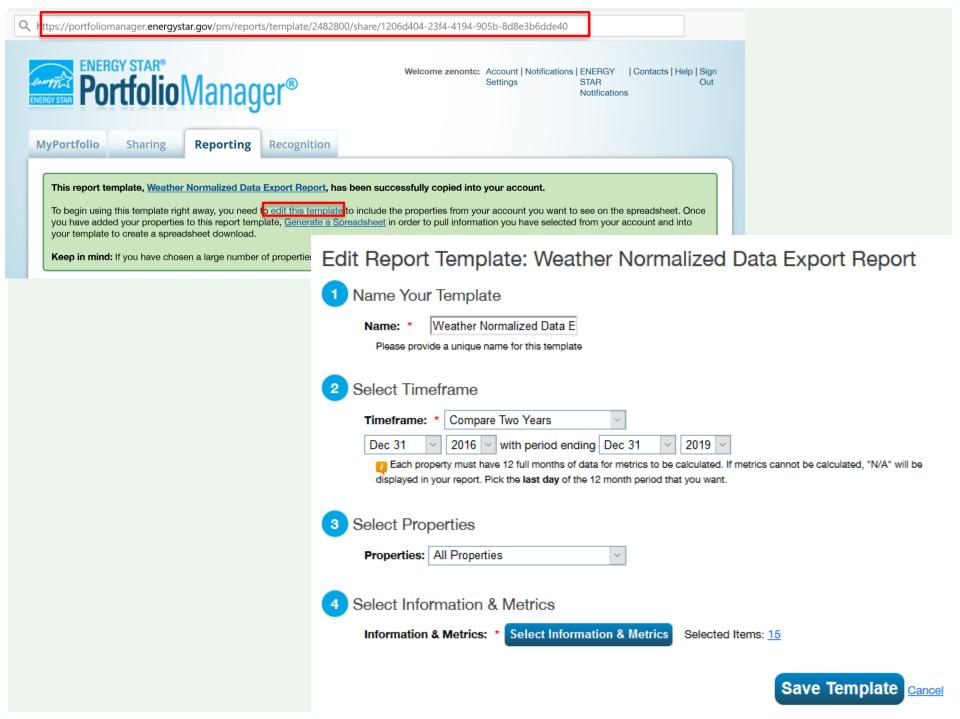
N/A

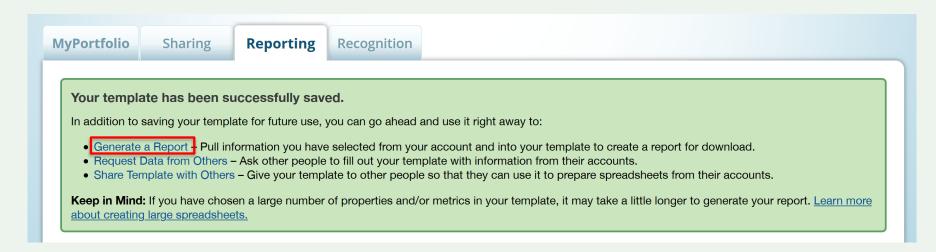
Summary Details Energy Water Waste & Materials Goals Design

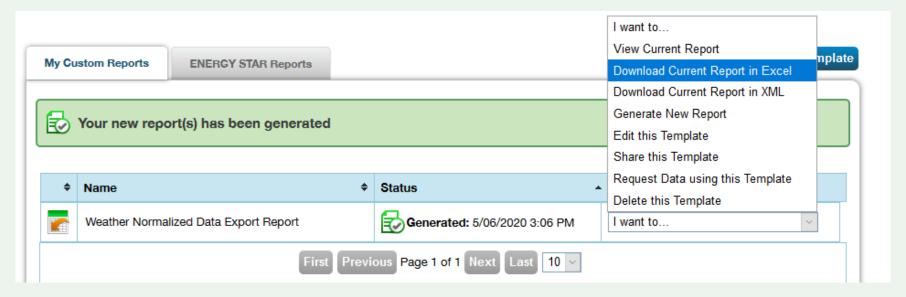
Metric /	Not Available (Energy Baseline)	Not Available / (Energy Current)	Change ?
ENERGY STAR Score (1-100)	Not Available	Not Available	N/A
Source EUI (kBtu/ft²)	Not Available	Not Available	N/A
Site EUI (kBtu/ft²)	Not Available	Not Available	N/A
Energy Cost (\$)	Not Available	Not Available	N/A
Total GHG Emissions Intensity (kgCO2e/ft²)	Not Available	Not Available	N/A
Water Use (All Water Sources) (kgal)	Not Available	Not Available	N/A
Total Waste (Disposed and Diverted) (Tons)	Not Available	Not Available	N/A

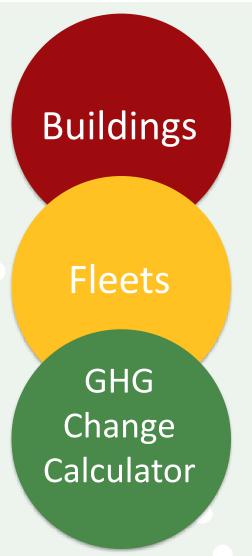


Your meters have been created! If you have your energy consumption information for these meters, you can enter it below. Or, you can <u>continue with setting up your meters</u> and enter your energy bills later.


Your Meter Entries for Municipal Building


Now we need actual energy consumption information in order to start providing you with your metrics and, possibly, your score!


2 Energy Meter(s) for Municipal Building



Weather I	Normalized	Data Export	t Report									
Date Downlo	oaded: 05/06/	2020 07:40 PN	/I EDT									
Date Genera	ated: 05/06/20	020 07:40 PM E	EDT									
Number of p	properties in re	eport: 3										
Property Id	Property Name	Year Ending ↓1	Address 1	City	State/Province	Postal Code	Natural Gas Use (therms)	Weather Normalized Site Natural Gas Use (therms)	Electricity Use - Grid Purchase (kWh)	Weather Normalized Site Electricity (kWh)	Site Energy Use (kBtu)	Weather Normalized Site Energy Use (kBtu)
	Sample Library	12/31/2016	88 Rose Street	Ewing	New Jersey	08628	32680.30	35379.20	2185493.00	2185493.00	10724933.30	10994819.1
	Municipal Building	12/31/2016	123 Main Street	Ewing	New Jersey	08628	80449.00	87917.00	6259162.60	6195127.50	29401165.70	29929473.3
10890625	Town Hall	12/31/2016	123 Main Street	Ewing	New Jersey	08628	80449.00	87917.00	6259162.60	6195127.50	29401165.70	29929473.3
							193578.30	211213.20	14703818.20	14575748.00	69527264.70	70853765.70
7456057	Sample Library	12/31/2019	88 Rose Street	Ewing	New Jersey	08628	25435.20	27542.20	2011680.60	2011680.60	9407375.10	9618078.8
	Municipal Building	12/31/2019	123 Main Street	Ewing	New Jersey	08628	81517.00	88637.10	5300464.30	5300464.30	26236886.10	26948898
10890625	Town Hall	12/31/2019	123 Main Street	Ewing	New Jersey	08628	81517.00	88637.10	5300464.30	5300464.30	26236886.10	26948898
							188469.20	204816.40	12612609.20	12612609.20	61881147.30	63515874.80

Calculating change in municipal GHG emissions

- I. What to track?
- II. Use ENERGY STAR Portfolio Manager to track building energy usage and export weather-normalized data.
- **III.** Complete Fleet Inventory
- IV. Calculate percent change in GHG emissions from the baseline year to the comparison year.

Vehicle data must include fuel usage and vehicle miles traveled by complete cells highlighted in yellow, grey cells contain formulas all municipal vehicles, whether owned or leased. Data must be provided for all departments with any type of motorized vehicle including Purchasing, Finance, Fire, Police, Public Works, etc. Reasonable estimates may be provided when exact data is not available.

2. Vehicle CH4 & N20

1. Vehicle Inventory

					Fuel Type						
	Vehicle Type				(Gasoline,	Odometer		Annual Fuel			Average Fuel
	(bus, truck,				Diesel,	Reading at	Miles Traveled	Usage in	Fuel Units	Annual Fuel	Efficiency in
Vehicle Identification Number	sedan, segway,				Electricity,	end of	in Baseline	Baseline	(Gallons,	Cost in	Baseline Year
(if applicable)	scooter, etc)	Year	Make	Model	etc)	Baseline Year	Year	Year	GGE, kWh)	Recent Year	(miles per fuel unit)
1A2B3C4D5E6F7G8H9	Sedan	2014	Ford	Crown Victoria	Gasoline	20000	10000	400	Gallons	1,000	25.00
2A2B3C4D5E6F7G8H9	Sedan	2014	Ford	Crown Victoria	Gasoline	20000	10000	400	Gallons	1,000	25.00
3A2B3C4D5E6F7G8H9	Sedan	2014	Ford	Crown Victoria	Gasoline	20000	10000	400	Gallons	1,000	25.00
							30000	1200	Gallons	3000	
4A2B3C4D5E6F7G8H9	Truck	2014	Ford	F-15	Gasoline	20000	10000	450	Gallons	1,500	22.22
5A2B3C4D5E6F7G8H9	Truck	2014	Ford	F-15	Gasoline	20000	10000	450	Gallons	1,500	22.22
6A2B3C4D5E6F7G8H9	Truck	2014	Ford	F-15	Gasoline	20000	10000	450	Gallons	1,500	22.22
							30000	1350	Gallons	4500	
7A2B3C4D5E6F7G8H9	Garbage Truck	2014	Freightliner	M2106	Diesel	10000	5000	1000	Gallons	2500	5.00
8A2B3C4D5E6F7G8H9	Sedan	2015	Nissan	Leaf	Electricity	10000	10000	1000	kWh	500	10.00

1 4

(+)

3. Fleet Summary

		_						
Municipality:	Municipality X		complete	cells high	ilighted i	n yellow,	grey cells con	tain formulas
Year Selected:	2016	-						
Enter baseline year mi	ileage for each t	ype of municipal v	ehicle.					
Methane and Nitrous Oxi	ide Emissions Fact	tors for Highway Veh	icles					
Vehicle Type/ Control	LIIII B BIOII B I BOI	Total Mileage for	N ₂ O	CH.	N ₂ O	CH.	N ₂ O	CH₄
Technology	Model Year	Each Vehicle Type	(g/mi)	(g/mi)	grams	grams	Metric Tons	Metric Tons
Gasoline Passenger	riodel real	Lacii veilicie Type	(giiii)	(giiii)	grains	grains	Wethe Tons	Wethe folis
EPA Tier 2	2004 and Later	30000	0.0036	0.0173	108	519	0.000108	0.000519
Low Emission	2000-2003	30000	0.0036	0.0105	0	0	0.000108	0.000519
EPA Tier 1	1995-1999		0.0429	0.0271	0	0	0	
EPA Tier 0	1981-1994		0.0423	0.0704	0	0	0	0
Oxidation Catalust	1975-1980		0.0504	0.0104	0	0	0	0
Non-Catalyst	1973-1974		0.0304	0.1696	0	ő	0	0
Uncontrolled	1972 and Earlier		0.0197	0.1030	ő	ő	0	0
Gasoline Light-Duty	10 TE GITG EGITICI		0.0101	0.110	Ŭ			
Trucks								
EPA Tier 2	2005 and Later	30000	0.0066	0.0163	198	489	0.000198	0.000489
Low Emission	2001-2004		0.0157	0.0148	0	0	0.000130	0.000400
EPA Tier 1	1995-2000		0.0871	0.0452	ŏ	ŏ	0	0
EPA Tier 0	1986-1994		0.1056	0.0776	Ō	Ō	0	0
Oxidation Catalyst	1975-1985		0.0639	0.1516	Ō	ō	0	0
Non-Catalust	1973-1974		0.0218	0.1908	Ō	Ō	0	0
Uncontrolled	1972 and Earlier		0.0220	0.2024	Ō	Ō	0	0
Gasoline Heavy-Duty								
Vehicles								
EPA Tier 2	2004 and Later		0.0134	0.0333	0	0	0	0
Low Emission	1998-2003		0.032	0.0303	0	0	0	0
EPA Tier 1	1996-2003		0.175	0.0655	0	0	0	0
EPA Tier 0	1996 and Later		0.2135	0.263	0	0	0	0
Oxidation Catalyst	1996 and Later		0.1317	0.2356	0	0	0	0
Non-Catalyst	1985-1995		0.0473	0.4181	0	0	0	0
Uncontrolled	1984 and Earlier		0.0497	0.4604	0	0	0	0
Diesel Passenger Cars								
Advanced	1996 and Later		0.001	0.0005	0	0	0	0
Moderate	1983-1995		0.001	0.0005	0	0	0	0
Uncontrolled	1982 and Earlier		0.0012	0.0006	0	0	0	0
Diesel Light-Duty Trucks	:							
Advanced	1996 and Later		0.0015	0.001	0		0	0
Moderate	1983-1995		0.0014	0.0009	0	0	0	0
Uncontrolled	1982 and Earlier		0.0017	0.0011	0	0	0	0
Diesel Heavy-Duty Vehicles								
Advanced	1996 and Later	5000	0.048	0.0051	240	25.5	0.00024	0.0000255
Moderate	1983-1995	3000	0.048	0.0051	0	0	0.00024	0.0000233
Uncontrolled	1982 and Earlier		0.048	0.0051	ő	ŏ	0	0
Motorcycles				<u> </u>				
Non-Catalyst	1996 and Later		0.0069	0.0672	0	0	0	0
Uncontrolled	1995 and Earlier		0.0087	0.0899	ŏ	ŏ	0	0
Source: U.S. Environmental Prote		of U.S. Greenhouse Gas Er	nissions and	Sinks: 1990-				
2005, EPA 430-R-07-002, Annex :	3.2, (April 2007), web site:	:					N₂O	CH₄ Metric
http://www.epa.gov/climatechang	ełemissions/usinventor	jreport.html					Metric Tons	Tons
	TOTALS	65000					0.000546	0.0010335
						e	nter these totals it	nto worksheet 3

Municipality	Municip	alib. V			lata a		d in wallaw.	urau aalla	annenin form	
Municipality:	Municip	anty X			complete co	ells highlighte	a ın yenow, g	grey cens	contain forf	nuias
Baseline Year Selected:	2016									
Fleet Inventory Contact Name:	John Do		Depar	tmont:	Public Work		ntact Email:	idoo@Mu	nicipalityV o	
Fleet inventory Contact Name.	John Do)e	Depai	imeni.	Public Work		ntact Phone:			q
Floot Cummon						Co	ntact Priorie.	111-222-	3333	
Fleet Summary										
# light duty vehicles										
# light duty vehicles		4								
# heavy duty vehicles		3								
Total Fleet Size:		7								
T. (15. 10. 4. 6.					040.000					
Total Fuel Costs fo	r all Muni	icipai v	enicles	in Year	\$18,000					
- 10 " 1 10 15										
Fuel Consumption (and Scope 1 Emis	sions fro	om Mob	lle Fue	Combu	stion)					
	Total Fu	el								
	Units									
	consum	ned by								
Municipal Operation - Vehicle	all muni		CO2		CO2	CO2				
Emissions	vehicles		Emiss	ions		(Metric				
CO2 emissions by fuel usage	baselin				(lbs)	Tons CO2e)				
Motor Gasoline (gallons)	busciiii	2550		19.54	1/	22.6011635				
Diesel Fuel (gallons)		1000		22.37	22370					
Biodiesel B20 (gallons)		1000								
				17.89 15.25		_				
Natural Gas (gge)					0					
Propane (gallons)				12.67	0					
Other 1 specify fuel (units)					0	_				
Other 2 specify fuel (units)					0					
Other 3 specify fuel (units)					0	_				
Carbon dioxide emissions coefficients:	http://ww	vw.eia.c	doe.gov	<u>/oiaf/160</u>	5/excel/Fuel ^o	%20Emission	%20Factors.	<u>xls</u>		
							CH4	CH4	N20	N20
Municipal Operation - Vehicle							Emissions	(Metric	Emissions	(Metric
Emissions							(Metric	Tons	(Metric	Tons
CH4 and N20 emissions by mileage			Total I	/lileage			Tons)	CO2e)	Tons)	CO2e)
CITY UND 1420 CHIISSIONS Dy Hilledge			Totall	meage	—		Tollaj	COZE	Tollaj	COZE
Totals from Worksheet 2, "Vehi	cle CH4 (& N20"		65000			0.0010335	0.02584	0.000546	0.1627
					_					
	Total									
	Emissio	ns								
	(Metric									
	CO2e)	ions								
	COZE									
FLEET CARBON FOOTPRINT	32 026	57766								
FLEET CARDON FOOTPRINT	32.930	57700								

Calculating change in municipal GHG emissions

- I. What to track?
- II. Use ENERGY STAR Portfolio Manager to track building energy usage and export weather-normalized data.
- III. Complete Fleet Inventory
- IV. Calculate percent change in GHG emissions from the baseline year to the comparison year.

Buildings

Fleets

GHG Change Calculator

_ ,															
Beta	Munic	cipal C	perat	ions	GHG I	Emiss	ions (Chang	e Cal	culato	r				
<u>Intro</u>															
Star Stand Inventory: more inform Instruction 1. Enter the cells are resonable to the compa 3. Review Percent Clannual per a reduction it will be gu 4. Submit Operations baseline al In the futur	lard in Ener See the Mu mation on h ms: me Baseling equired if ap if stationary me comparized on the perce can the perce can the perce in the perce can the perce in the perce can th	gy's Munici inicipal Ope ow to calcu e year info oplicable to fuel consul ison year i data. ent change shows the e e for each y green. If th calculator i	pal Operations Actilate GHG e formation and the municipal process of the coverall perceive a 3.6% ann as complete, d upload the et Inventor lio doesn't	ons Action ion (https:// emissions.com and data in pality, e.g., weather-no and data data is filled ent change in the two y ual reduction , and the ar e complete y spreadsh significantly	the Baseli if the munic rmalized pu in the cor d in, the pe between th rears. If ther on requirem nual rate of d GHG Em eets to the r change, th	ange in GH to be used ainablejerse nunicipal op ine year sh cipality use urchased el- mparison y reent chang the baseline re is an incu- tent has not freduction dissions Cha action subi- the same sp	with ENER y.com/actio erations. neet. On SI s oil or prop ectricity co rear sheet. ge is autom and the cou rease in ove been met, is met, reci ange Calcul mission.	neet 1. Bas pane or if st me from the On Sheet atically cale mparison year erall emission the cell with	eline Year, reetlights a weather! Culated on the ear, and the ear, and the ear, the 'To h the percent changed the Weather!	fill the bright re municipal Normalized son Year at the Percent of Annual Potal Percent change ein your nate her-Normal	Sustainablion/565) and the yellow ceally operate Data Expound % Change shercent Change will turn reconstructive for the ized Data Expound the yellow is change will turn reconstructive for the ized Data Expound the yellow is the yellow in the yellow is the yellow in the yellow in the yellow in the yellow in the yellow is the yellow in th	e Jersey's Ind the Guide ells. The light d. The wear rt Report. ge, fill the connect. The 'Tonge' is the ar ill turn red; l, and if it is the Municipal export Report	Fleet e (URL) for ht-yellow ther- cells with otal average if there is achieved, ort and the		

3) Percent Change

Factors and Notes

 \oplus

Intro-Instructions

1) Baseline Year

2) Comparison Year

Baseline Year	B.A.		10 1			Natural Gas Use		Electricity Use - Grid Purchase	Weather Normalized Site	:_
Municipality:	Municipality X	I	* Complete appli	cable cells highlig T	hted in yello	(therms)	Natural Gas Use	(kWh)	Electricity (kWh)	-
Baseline Year						-	(therms)	· · · · · · · · · · · · · · · · · · ·	▼	
Year (Select from dropdown):	2016			<u> </u>						-
Electricity Factorset (lb CO2e/MWh)	762.11			Ī						_
Electricky ractorset (ib copen rinn)	102.11					32680.30	35379.20	2185493.00	2185493.00	1
Stationary Fuel Consumption										
				<u> </u>	CH4	80449.00	87917.00	6259162.60	6195127.50	-
Municipal Operation - Natural Gas	Total Therms	converted to Million BTU	(lbs)	CO2 (Metric Tons CO2e)	Emission: (Metric Tons)	80449.00	87917.00	6259162.60	6195127.50	, n
Weather Normalized Building & Facilities	211213.2		2472884.146		0.105					1
Water & Wastewater Treatment Facilities		0		•		=SUM(H7:H9	211213.20	14703818.20	14575748.00	-
Other	044040.0	0			0.405		CITE OF C			F_
Natural Gas Total	211213.2	21121.32	2472884.146	1121.682196	0.1058	2.54	0765	2132 0.62941	5336 112 4 .5	15.
Purchased Electricity					Total Fuel					_
			CO2e		consumed all municip	al CO2	CO2 CO2 Emissions (Metric			
Municipal Operation - Floatsi-it-	Total K⊮h	Total Mun	Emissions (lbs)	CO2e (Metric	baseling	(las/fuel unit)	(lbs) Tons CC			
Municipal Operation - Electricity Weather Normalized Building & Facilities	14575748			Tons) 5038.654362	2	000 19.54 000 22.37	49827 22.601 22370 10.146	1635		
	14515140			+		17.89	0 0	0		
Street Lights & Traffic Signals Water & Wastewater Treatment Facilities		0				15.25	0	0		
		0				12.67	0	0		
Other 5'	*********			7004 T-4000	_		0	0		
Electricity Total	14575748	14575,748		507 #854362	_		0	0		
			*includes CD2,	# and NEV emi	http://www.	eia.doe.gov/oiaf/160	U 5/avcal/Eugl%20Emis	ecion%20Eactore vic		_
					. Http://www.	era.due.quworan rou.	S/excell del/020LITIIS	53101170201 actor3.xi3		_
Mobile Fuel Combustion										N20
Municipal Operation – Vehicle Emissions CO2 emissions by fuel usage	Total Fuel Units	CO2 Emissions (Masifuel unit)		CO2 (Metric Tons CO2e)	icle CH4 & N	Total Mileage]	(Metric To	ons (Metric Tons) C	(Me Ton CO2
Motor Gasoline (per gallon)	2550									
Diesel Fuel (per gallon)	1000									
Compressed Natural Gas (per 1000 cubic feet)		120.36	0							
Municipal Operation - Vehicle Emissions CH4 and N20 emissions by mileage		Total Mileage			CH4 Emissions (Metric Tons)	CM4 (Met		s M20 (Mei		
Totals from Worksheet 3, "Vehicle CH4 & N20		65000			0.001	<mark>0335</mark> 0.025	8375 0.00	<mark>0546</mark> 0.16	2708	
Vehicle Fuel Total			72197	32.74803216	0.0010	2335 <i>0.025</i> 1	3375 0.000	7546 0 15	2708 32.936	· -
verior ruer ruer			72.07	52.74000210	3.00 K	0.0230	0.000	0.10	32.330	
Totals										
TOTAL									Total Emission: (Metric To CO2e)	
Baseline Year Emissions									6196.5	4

Comparison Year

Comparison Year									
Year (Select from dropdown):	2019								
Electricity Factorset (lb CO2e/MWh)	719.875								
Electricity i actorset (ib COZen i will)	110.010								
Stationary Fuel Consumption									
•									
Municipal Operation - Natural Gas	Total Therms		CO2 Emissions (lbs)	CO2 (Metric Tons CO2e)	CH4 Emissions (Metric Tons)	Tons CO2e)		N20 (Metric Tons CO2e)	Total Emissions (Metric Tons CO2e)
Weather Normalized Building & Facilities	204816.4	20481.64	2397990.411	1087.710945	0.1024082	2.560205	0.002048164	0.610352872	1090.8815
Water & Wastewater Treatment Facilities		0		0	0			0	0
Other		0	0	0	0	0	0	0	0
Natural Gas Total	204816.4	20481.64	2397990.411	1087.710945	0.1024082	2.560205	0.002048164	0.610352872	1030.8815
naturar cas rotar	2010/0.1	2010.01	2007000.777	1007.710040	0. 102 1002	2.000200	0.002010101	0.070002072	1000.0010
Purchased Electricity									
Municipal Operation – Electricity	Total Kwh	Total M ₩h	CO2e Emissions (lbs)	CO2e (Metric Tons)					Total Emissions (Metric Tons CO2e)
Weather Normalized Building & Facilities	12612609.2	12612.6092	9079502.048	4118.395849					4118.39585
Street Lights & Traffic Signals	.2012000.2	0	0						0
Water & Wastewater Treatment Facilities		ő	ŏ						Ö
Other		ň	0						0
Uther Electricity Total	12512609.2	12612.6092	3079502.043						4118.39585
Electricity Fotal	120 12000.2	12012.0002			/		l dala a a di	\	4110.33385
			includes CUZ, -	um4 and Neu emi.	ssions precontien	ted to carbon diox	rae equivalents (c	,028/	
Mobile Fuel Combustion									
Municipal Operation - Vehicle Emissions CO2 emissions by fuel usage	Total Fuel Units	CO2 Emissions (lbs/fuel unit)	CO2 Emissions (lbs)	CO2 (Metric Tons CO2e)					
Motor Gasoline (per gallon)	2550	19.54	49827	22.60116346					
Diesel Fuel (per gallon)	1000		22370	10.1468687					
Compressed Natural Gas (per 1000 cubic feet)		120.36	0	0					
Municipal Operation - Vehicle Emissions CH4 and N20 emissions by mileage		Total Mileage			CH4 Emissions (Metric Tons)		N20 Emissions (Metric Tons)	N20 (Metric Tons CO2e)	Total Emissions (Metric Tons CO2e)
Totals from Worksheet 3, "Vehicle CH4 & N20"		65000			0.0010335	0.0258375	0.000546	0.162708	
Vehicle Fuel Total			72197	32.74803216	0.0010335	0.0258375	0.000546	0.162708	32.336578
Tabala									
Totals									Total Emissions (Metric Tons CO2e)
Comparison Year Emissions									5242.2139

Percent Change					
GHG Emissions Change					
				Total Percent Change	-15.40%
				Difference in Number of Years	3
				Average Annual Percent Change	-5.13%

Action update and guide coming soon!

Contact Information: Zenon Tech-Czarny, Sustainable Jersey Research and Project Specialist czarnyz@tcnj.edu (609) 771-2549

PROGRAM UNDERWRITERS

SUMMIT SPONSORS

