

Stormwater Management's Role in Community Health and Prosperity

NJ League of Municipalities Conference November 14, 2016

Stormwater Management's Role

Presiding Mayor:

The Honorable Dana Redd, Mayor of Camden Panelist:

- Donna Drewes, Co-Director Sustainable Jersey
- Jennifer Gonzalez, Principal Planner, City of Hoboken
- Chris Obropta, Ph.D., P.E., Associate Extension Specialist in Water Resources, Rutgers Cooperative Extension Water Resources Program
- Edward Confair, RLA, PE, Project Manager, Engineering & Land Planning Assoc., Inc.

Introducing

JERSEY WATER OOOVORKS

Smart infrastructure. Strong communities.

Collaborative Structure

Network Email List

Sign up for the Jersey Water Works Network email list to receive a monthly newsletter with updates and and information.

Member

Members work together across boundaries to support, endorse and implement strategies identified by the collaborative.

Committee Member

Committees engage actively in the work of the collaborative and contribute to advancing the yearly objectives and longer term goals.

@JerseyWaterWrks

Steering Committee Member

Jersey Water Works is led by it's Steering Committee, a broad cross-section of individuals working together to upgrade New Jersey's water infrastructure.

COLLABORATIVE WORK & PROGRESS & RESOURCES

ABOUT THE

Become a member today!

OUR

HIGHLIGHTS

www.jerseywaterworks.org

Jersey Water Works is working to transform New Jersey's inadequate water infrastructure through sustainable, cost-effective solutions that provide communities with clean water and waterways; healthier, safer neighborhoods; local jobs; flood and climate resilience; and economic growth.

JERSEY WATER

How our water infrastructure works (and doesn't) ...

LEARN MORE

... and what Jersey Water Works is doing to help upgrade it

९ 🔰 🖪 🖸

EVENTS

TOOLS

LEAF

Become a Member!

Jersey Water Works welcomes individuals and organizations committed to working towards transforming New Jersey's inadequate water infrastructure through sustainable, cost-effective solutions that provide communities multiple benefits.

LEARN MORE

@JerseyWaterWrks

Shared Goals

Effective Green and Gray Infrastructure

Urbanized communities maintain and improve drinking water, wastewater and stormwater infrastructure systems to reduce flooding, protect the environment, and deliver quality water services in a way that maximizes community benefits.

Smart Combined Sewer Overflow (CSO) Plans

Municipalities and utilities adopt innovative CSO Long Term Control Plans (LTCPs) with cost-effective solutions and multiple community benefits that meet or exceed permit requirements.

Financially Sustainable Systems

Operating budgets and capital investment for drinking water, wastewater and stormwater infrastructure are adequate and affordable, resulting in systems that operate efficiently and in a state of good repair.

Empowered Stakeholders

Well-informed decision makers, community partners and ratepayers participate actively and influence the planning and management of their water infrastructure.

Committees

GI Committee Purpose

The Green Infrastructure subcommittee works to promote and advance construction of green infrastructure projects in CSO communities and across the state.

GI Committee Goals & Subgoals

Effective Green and Gray Infrastructure

Urbanized communities maintain and improve drinking water, wastewater and stormwater infrastructure systems to reduce flooding, protect the environment, and deliver quality water services in a way that maximizes community benefits.

1.1. Installing Green Infrastructure

The public and private sectors integrate green stormwater infrastructure into new projects and existing facilities to reduce flooding and improve water quality, local economies, community health and long-term resiliency.

Smart Combined Sewer Overflow (CSO) Plans

Municipalities and utilities adopt innovative CSO Long Term Control Plans (LTCPs) with cost-effective solutions and multiple community benefits that meet or exceed permit requirements.

2.1. Balancing Pipes and Parks

LTCPs incorporate and commit to an optimized balance of green and gray infrastructure to achieve the goals of the Clean Water Act.

2.3. Serving Host Communities

Implementation of the LTCPs delivers significant additional community benefits including improved public health, green space, economic revitalization and local jobs.

GI Committee 2016 Actions

	Work Plan Action Items	Volunteers
	Action 1: Sustainable Jersey Actions	Chris Obropta, Jen Gonzalez, Maureen Krudner, Jennifer Duckworth, Maria Watt, Russ Dudley
	Action 2: Green Infrastructure in Parks	Dan Van Abs, Chris Sturm
	Action 3: Green Infrastructure Monitoring Database	Nick Tufaro, Heather Fenyck, Maria Watt
	Action 4: Green Streets	Rob Pirani, Jen Gonzalez, Jennifer Duckworth, Maureen Krudner, David Antonio
	Action 5: Green Infrastructure in Construction/Development	Kandyce Perry, Louise Wilson
	Action 6: Citizen's Handbook for Green	Ashwani Vasishth , Tim Van Epp

@JerseyWaterWrks

Sustainable Jersey Green Infrastructure Actions

Jersey Water Works Green Infrastructure Subcommittee

Planning Action

@JerseyWaterWrks

Tier 1. Impervious Cover Assessment [5 pts]

Tier 2. Green Infrastructure Action Plan [10 -15 pts]

Tier 3. Green Infrastructure Strategic Plan [20 pts]

Tier 1. Impervious Cover Assessment

- Establishes baseline for Tiers 2 and 3
- Assemble GIS data by watershed and sewershed (if available)
- Analyze data, create charts and maps
- Calculate the impervious cover area
- Calculate the stormwater runoff volumes

ØJerseyWaterWrks

Planning

Action

Rent Tomorow, One Community as the

Tier 2. Green Infrastructure Action Plan

- Requirements of Tier 1
- Engage the Community
- Set short-term Impervious cover management goal (% or acreage)
- Identify sites for immediate and short-term GI projects
- Determine feasibility
- Develop concept plans and project sheets
- Identify costs, benefits, and funding
- Link to Stormwater Mitigation Plan

Planning

Action

Rent Tomorow, One Community as the

Tier 3. Green Infrastructure Action Plan

- Requirements of Tiers 1 & 2
- Identify siting opportunities and constraints
- Set long-term Impervious cover management goal (% or acreage)
- Use opportunities and constraints to identify sites for long-term GI projects and policy recommendations
- Assess the water quantity and quality benefits (modeling)
- Develop an implementation agenda
- Link to Stormwater Mitigation Plan

Planning

Action

SUSTAINABLE JERSEY . CENTIFIED.

<u>New Jersey Green Infrastructure Guidance Manual</u>

- <u>New Jersey Rain Garden Manual</u>
- <u>Rutgers Water Resources Introduction to Green</u> <u>Infrastructure</u>
- <u>Rutgers Water Resources Green Infrastructure Fact</u>
 <u>Sheets</u>
- <u>US EPA Green Infrastructure Information</u>
- NJDEP Green Infrastructure Information

#JWWMember

Technical Resources

THUR TOMOTORY, ONE COMPARENT OF THE

NJ Flood Mapper

- <u>NJADAPT</u>
- <u>Getting To Resilience</u>
- NJGIN New Jersey Geographic Information Network
- NJDEP GeoWeb Environmental Mapping Tool
- NJDEP 3.0 HUD Environmental Review Tool
- NJDEP Municipal recreation and open space inventory
- EPA Stormwater Calculator
- <u>USGS Web Soil Survey</u>
- <u>Climate Central Surging Seas</u>
- NOAA Sea Level Rise Viewer
- <u>Environmental Protection Agency Climate Ready</u> <u>Water Utilities</u>

Mapping Resources

Sample Planning Documents

@JerseyWaterWrks

- Sample Impervious Cover Assessments:
 - <u>New Brunswick Impervious Cover Assessment</u>
 - Hillsborough Impervious Cover Assessment
 - <u>Impervious Cover Assessments and Reduction</u> <u>Action Plans for Raritan River Basin Municipalities</u>
- Sample Green Infrastructure Action Plans:
 - <u>Camden Green Infrastructure Feasibility Study</u>
 - Newark Green Infrastructure Feasibility Study
 - Paterson Green Infrastructure Feasibility Study
 - Impervious Cover Assessments and Reduction Action Plans for Raritan River Basin Municipalities
- Sample Green Infrastructure Strategic Plans:
 - New York City Green Infrastructure Plan
 - <u>Milwaukee Metropolitan Sewerage District Fresh</u>
 <u>Coast Green Solutions Plan</u>
 - Hoboken Green Infrastructure Strategic Plan

Implementation Action

Tier 1. Implementation of green infrastructure demonstration projects [10 pts]

Tier 2. Implementation of shortterm green infrastructure projects [15 pts]

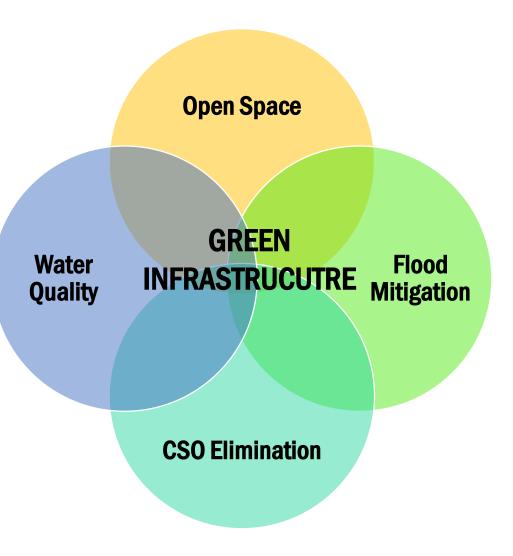
Tier 3. Implementation of policy changes and long-term green infrastructure projects [20 pts]

Case Study

New Jersey League of Municipalities November 15, 2016

CONNECTING PEOPLE, PLACES, AND POTENTIAL.

HOBOKEN GREEN INFRASTRUCTURE STRATEGIC PLAN HOBOKEN, NJ


OCTOBER 2013

FINAL REPORT

Green Infrastructure BMPs Considered

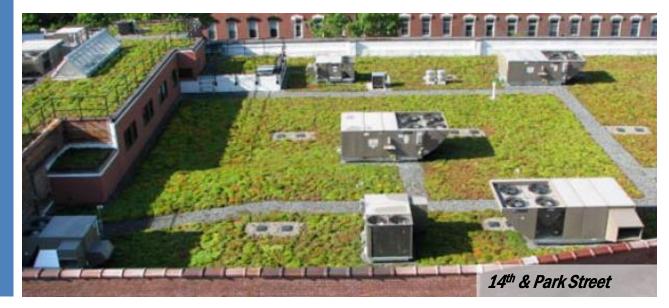
- Subsurface Storage
- Greenroofs
- Raingardens
- Rainwater Harvesting
- Stormwater Tree pits
- Vegetated Swales (rightof-way bioswales)
- Constructed Wetlands
- Basins or Ponds
- Permeable Pavements
- Stormwater Infiltration Planters

Methodology

City-wide Strategy

Rainwater Harvesting

Code §136-2


- Legalized use of rain barrels in 2011
- Rain barrels were previously considered a nuisance
- Any container maintained for the short-term collection of rainwater must have a properly fitting lid, be access-resistant to insects and rodents and must be maintained in good working order at all times and must be kept in a clean and sanitary way

Green Roofs

Code §196-28

- Incentivized use of green roofs in 2015
- Green roofs are encouraged wherever possible (especially on roofs with surface area of ≥ 5,000 SF)
- If a green roof is provided on at least 50% of the roof surface, the remainder may be utilized for a roof deck
- Rooftop gardens are considered a green roof and may cover up to 90% of a roof's surface area

Proposed Amendment to Stormwater Management Plan / Ordinance

Code §166

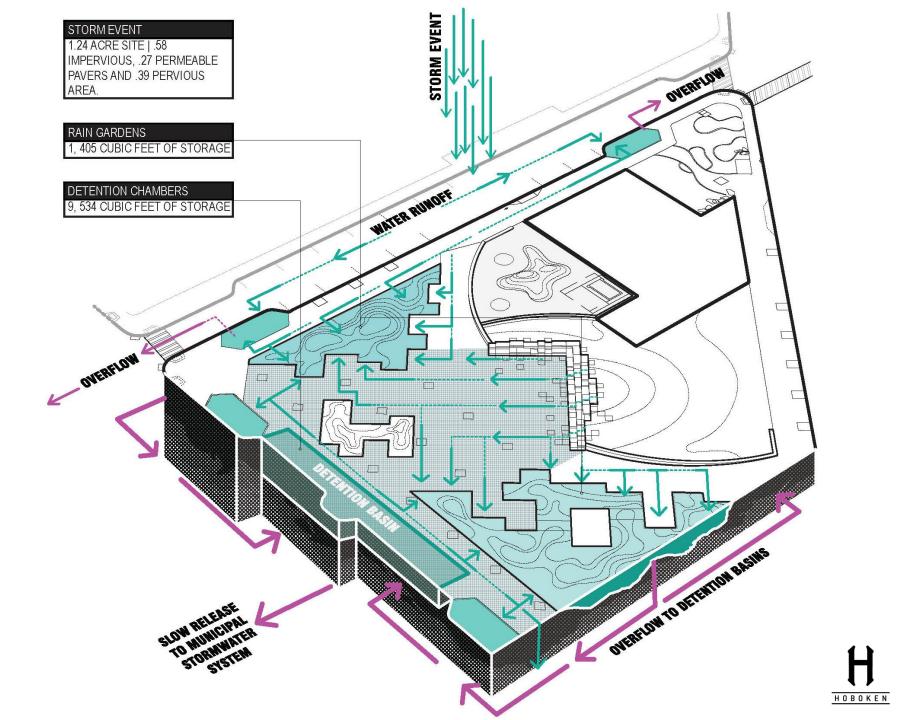
- Current Stormwater Management Plan (2007)
 - Only applies to major development projects (≥ 1 acre disturbance) in the MS4 area
- Proposed amendment sets broad stormwater design and performance standards for stormwater retention, runoff quantity and runoff quality
 - Applies to new development, redevelopment and disturbance ≥3,000 SF across the entire City
 - Ensures that individual property owners are not limited in how they fulfill regulatory requirements
 - Fosters innovation
- Requires using nonstructural BMPs or green infrastructure to the maximum extent practicable before using structural BMPs
- References, and supersedes, latest NHSA Technical Requirements for Stormwater Management:

Southwest Park

EVENT SPACE

DOG RUN

POP-UP MARKET ZONE


TEMPORARY CLOSING ON MARKET/EVENT DAY BIOSWALE BUMP-OUTS

INTERACTIVE SCULPTURE IN LAWN

SHADED

GARDEN

HOBOKEN

H1 and H5 Pump Stations

Ì

Washington Street Redesign

City Hall Green Infrastructure

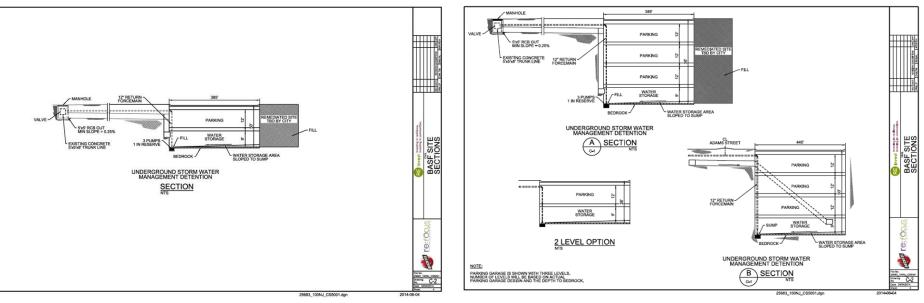
Northwest Park

Resiliency Park

2th Street

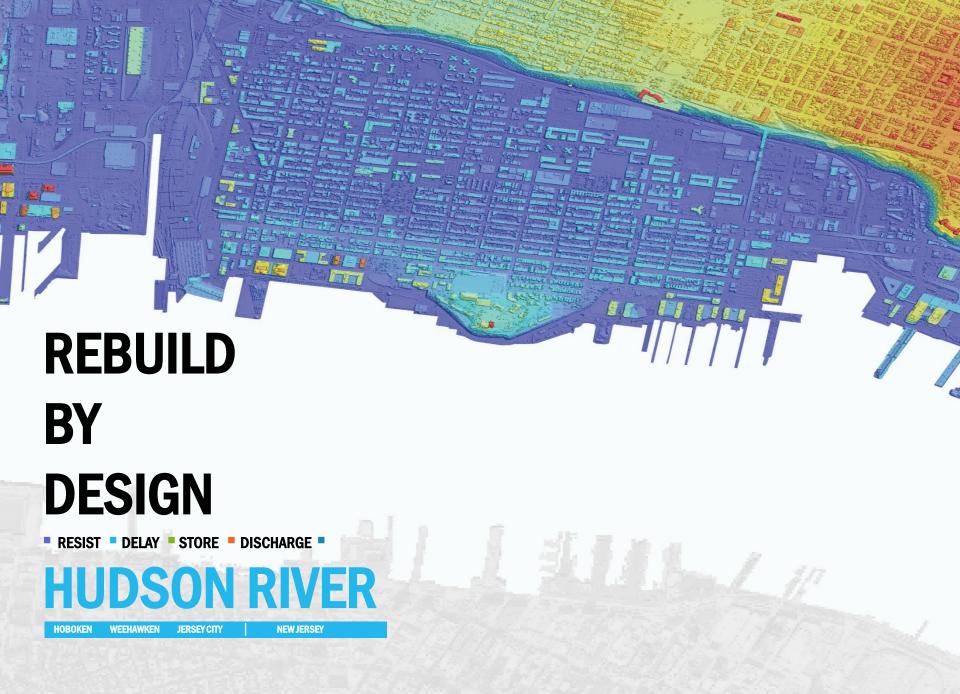
Madison Street

Adams Street


13th Street

Parking Garage

Resiliency Park


- Integrated flood management solutions to complement RBD
- Proposed a combined surface and sub-surface plan to utilize 4 contiguous acres of the 6-acre BASF site that would include:
 - Stormwater detention facility
 - Underground parking garage
 - Surface park space
 - Integrated green infrastructure

NHSA Eco-Zone

- Create an "ecological zone" in part of the H6 and H7 drainage areas
- Would install new storm sewer infrastructure to separate the currently combined system
- Stormwater would flow to the BASF site where solids and floatables would be removed
- Stormwater would be detained under BASF site until the detention facility is at capacity
- New stormwater pump station on BASF site would pump to a new outfall in Weehawken Cove
- Engineered wetlands in Cove would filter stormwater

Rebuild by Design Vision

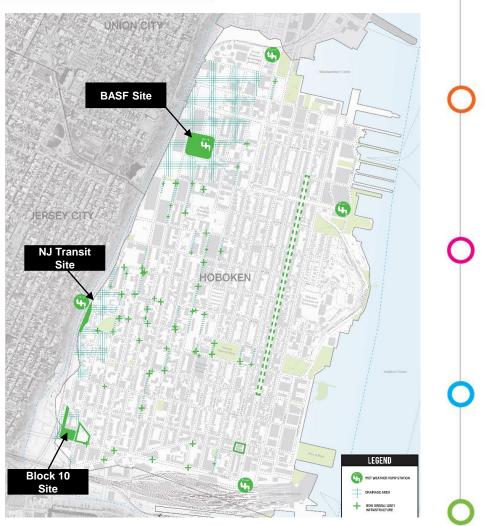
Delay, Store, Discharge: Drainage Area

Proposed underground detention facilities with green/open space on ground surface with discharge features such as pumps to manage rainfall runoff volume

ROW Green/Grey Infrastructure Practices

- Total of 61 sites to manage street drainage for approx. 13 acres

NJ Transit site


- Manages rainfall runoff for approx. 15 acres

Block 10 site

- Manages rainfall runoff for approx. 8 acres

BASF site

- Manages rainfall runoff for approx. 55 acres

Thank you!

Jennifer Gonzalez _{AICP, ENV SP} Principal Planner City of Hoboken jgonzalez@hobokennj.gov

HUBDKEN	www.hobokennj.gov
f	https://www.facebook.com/hoboken
Y	https://twitter.com/cityofhoboken
U	https://www.instagram.com/hobokennj
v	https://vimeo.com/hobokennj
	https://www.flickr.com/photos/hoboken

RUTGERS THE STATE UNIVERSITY OF NEW JERSEY

Resources for Implementing Stormwater Management

Christopher C. Obropta, Ph.D., P.E.

obropta@envsci.rutgers.edu

November 15, 2016

www.water.rutgers.edu

Rutgers Cooperative Extension

RUTGERS

Rutgers Cooperative Extension (RCE) helps the diverse population of New Jersey adapt to a rapidly changing society and improves their lives through an educational process that uses science-based knowledge.

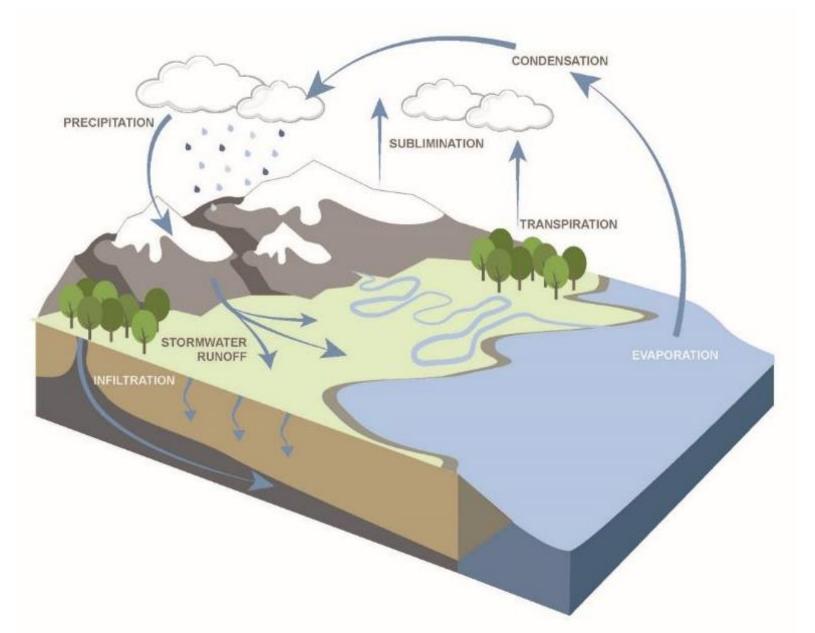
Water Resources Program

WATER RESOURCES PROGRAM

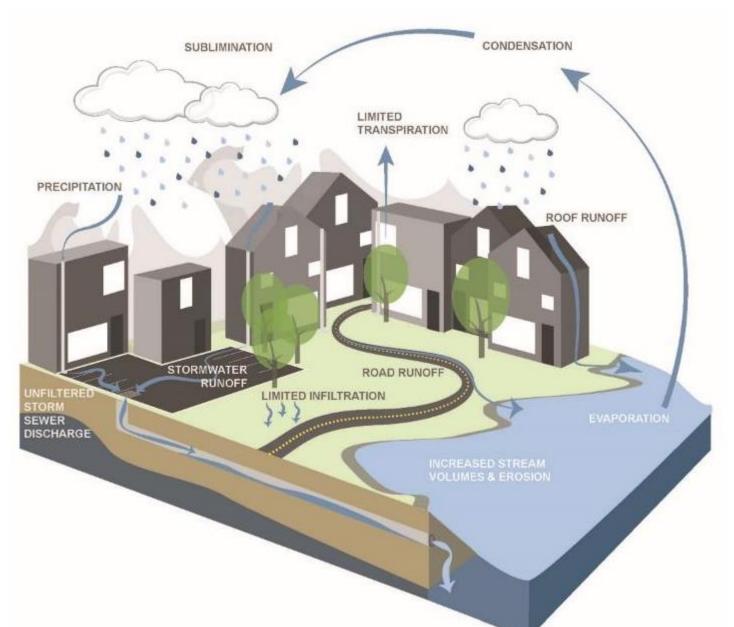
RESEARCH

NO

Integrating research, education, and extension


Delivering solutions based on sound science

Working with various members of the community, including municipalities, NGOs, and individual residents EXTENSION


Solving water resources issues in New Jersey

Our Mission is to identify and address community water resources issues using sustainable and practical science-based solutions.

The Natural Hydrologic Cycle

The Urban Hydrologic Cycle

A Brief History of Stormwater Management

1st Attempt at Stormwater Management

Capture all runoff, pipe it, and send it directly to the river . . . prior to mid 1970's

2nd Iteration of Stormwater Management

Capture runoff, detain it, release it slowly to the river... mid 1970's to 2004

- Detain peak flow during large storm events
- Reduce downstream flooding during major storms
- Use concrete low flow channels to reduce standing water
- Allows stormwater from small storms to pass through the system
- Directly discharges stormwater runoff to nearby stream, waterway, or municipal storm sewer system

3rd Generation of Stormwater Management

 Reduce peak flows and flooding

...and....

- Maintain infiltration and groundwater recharge
- Reduce pollution discharged to local waterways

abc Action News, August 27, 2012

RUTGERS

Water Resources Program

What is Green Infrastructure?

...an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly

Green Infrastructure projects:

- capture
- filter
- absorb
- reuse

stormwater to help restore the natural water cycle.

How does Green Infrastructure work?

Green Infrastructure practices use <u>soil</u> and <u>vegetation</u> to recycle stormwater runoff through infiltration and evapotranspiration.

Why Green infrastructure?

- Remediates flooding
- Improve water quality
- Reduces combined sewer overflows
- Cost-effective

- Small-scale systems that
 capture runoff near its source
- Mimic and help restore the natural hydrologic cycle
- Enhances aesthetics
- Cleans the air
- Reduces heat island effect

GREEN INFRASTRUCTURE TECHNOLOGIES

Green Infrastructure Systems:

Vegetative Systems

- Bioretention Systems/Rain Gardens
- Stormwater Planters
- <u>Harvesting Systems</u>
 - Cistern/Rain Barrel
 - Downspout Planter Boxes
- <u>Storage Systems</u>
 - Street Trees/Stormwater Tree Pits
 - Pervious Pavement

Difference between the types of systems:

GERS

- <u>Vegetative Systems:</u> focus on reducing water quality impacts. These systems are typically located close to the sources of runoff and can manage the smaller storms of several inches. The main treatment mechanisms are infiltration, filtration, and evapotranspiration.
- <u>Harvesting Systems:</u> focus on the conservation, capture, storage, and reuse of rainwater. These systems are located close to residential and commercial buildings.
- <u>Storage Systems:</u> provide storage of stormwater, quantity control, and infiltrate stormwater runoff. These systems are typically located close to runoff sources within residential, commercial, and industrial landscapes. The main treatment mechanism is reducing peak flows of stormwater by storing it before it enters the sewer system.

Bioretention Systems/Rain Gardens

Landscaped, shallow depression that captures, filters, and infiltrates stormwater runoff.

Bioretention Systems / Rain Gardens

How it works:

These systems capture, filter, and infiltrate stormwater runoff using soils and plant material. They are designed to capture the first few inches of rainfall from rooftops, parking areas, and streets.

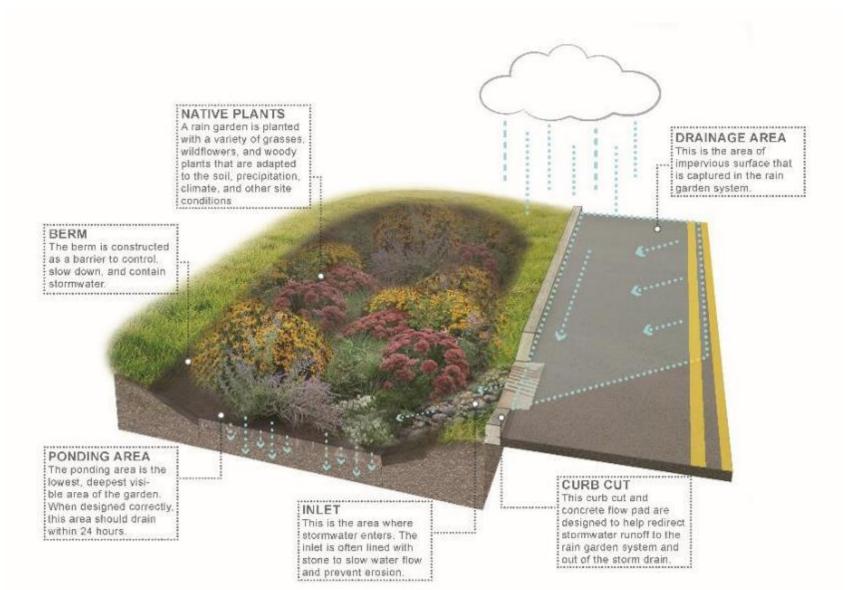
Benefits:

Removes nonpoint source pollutants from stormwater runoff while recharging groundwater

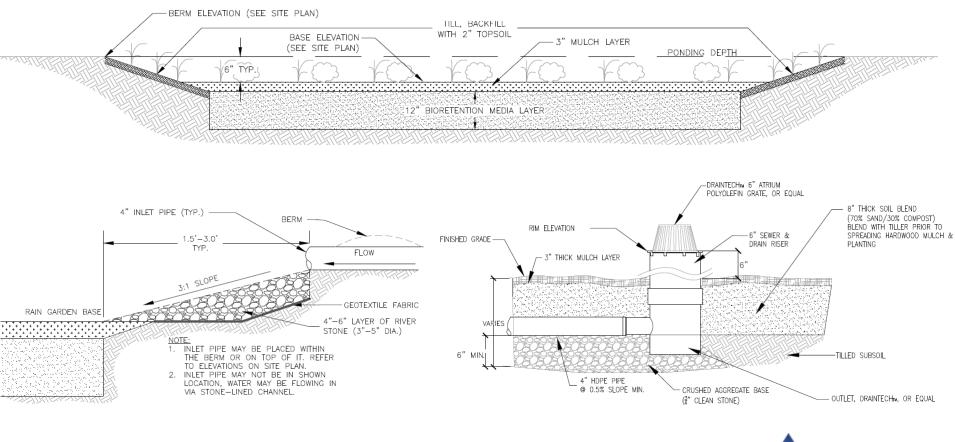
Restore/"mimic" predevelopment site hydrology

- Infiltration
- Evapotranspiration

Improve water quality


- Sedimentation, filtration, & plant uptake
- Microbial Activity

Add aesthetic value


Plant selection

Bioretention System/Rain Garden

Bioretention Systems / Rain Gardens

Water Resources Program

Rain garden at Catto School in Camden, NJ Vegetative System

RUTGERS

Water Resources Program

Rain garden installation at Ferry Avenue Library in Camden, NJ Vegetative System

Stormwater Planters

RUTGERS

Vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk.

Stormwater Planters

How it works:

RUTGERS

- It is a structural bioretention system that is installed in a sidewalk
- Contains a layer of stone that is topped with bioretention media and plants or trees
- Captures stormwater runoff from the roadway and sidewalk
- Once the system fills up, runoff flows back into the street or into an overflow drain which connects to the sewer system

Benefits:

Allows water to infiltrate into the ground

Water Resources Program

Stormwater Planter

NATIVE PLANTS A stormwater planter is

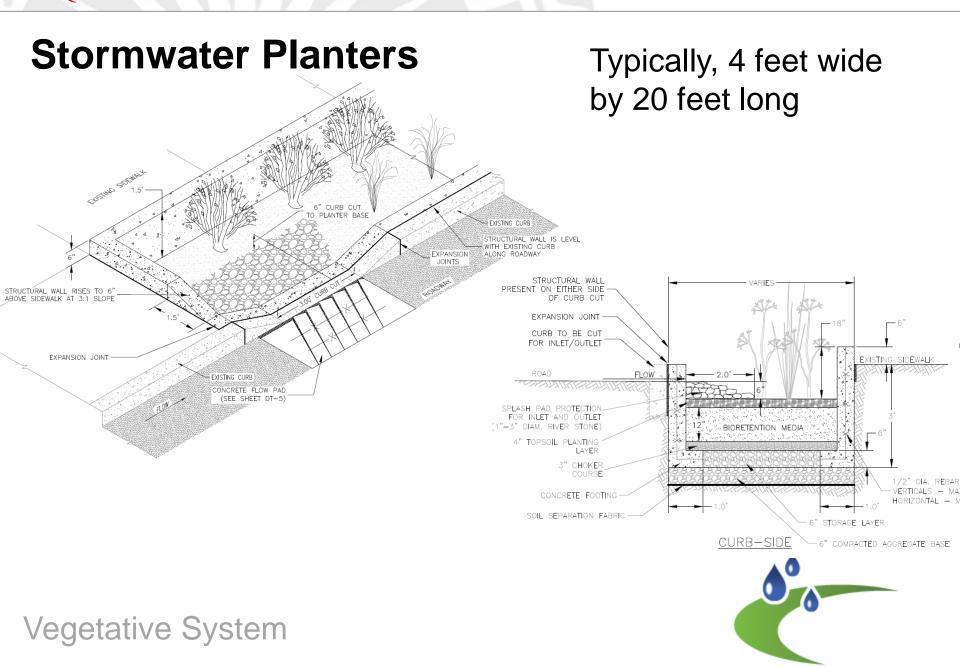
planted with a variety of grasses, wildflowers, and woody plants that are adapted to the soil, precipitation, climate, and other site conditions.

CURB CUT

This curb cut and concrete flow pad are designed to help redirect stormwater runoff to the rain garden system and out of the storm drain.

CONCRETE WALL

Concrete walls are installed to match the existing curb. These walls create the frame for the stormwater planter and continue to function as a curb. INLET


This is the area where stormwater enters. The inlet is often lined with stone to slow water flow and prevent erosion.

SUBGRADE

Stormwater planter systems are unique because of their subgrade structure. This structure is layered with bioretention media, choker course, compact aggregate, and soil separation fabric.

RUTGERS

Water Resources Program

Water Resources Program

Stormwater Planter at the Brimm School in Camden, NJ Vegetative System

RUTGERS

Water Resources Program

Stormwater Planters at Community Garden in Camden, NJ

000

Cisterns/ Rain Barrels

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for water garden, washing vehicles, or for other <u>non-</u><u>potable</u> uses.

Cistern/ Rain Barrel

How it works:

• Capture, diversion, and storage of rainwater

Benefits:

RUTGERS

- Eliminates need for complex and costly distribution systems
- Provides additional water source
- Landscape irrigation
- Reduces flow to stormwater drains
- Reduces non-point source pollution
- Delays expansion of existing water treatment plants
- Reduces consumers' utility bills

Harvesting System

Rainwater Harvesting

DRAINAGE AREA This is the area of impervious surface i that is captured in the rainwater harvesting system. In this case, it is a structure rooftop. GUTTER This captures runoff from the rooftop and diverts it to the rainwater harvesting system. FIRST FLUSH DIVERTER This mechanism is installed to by-pass the first several gallons CISTERN TANK of runoff which tend to be the This tank is designed dirtiest water before it enters in different sizes to the tank. accomodate the runoff from a designated drainage area. SPIGOT A spigot is installed near the base of the cistern tank to allow water to be removed for use without an electronic pump system. OVERFLOW ----This mechanism is SEDIMENT designed to act as a Sediment and other discharge for the water pollutants that enter when the cistern is full or the tank will settle to

when it is winterized.

the bottom.

Water Resources Program

Cistern at the Neighborhood Center in Camden, NJ

Harvesting System

Water Resources Program

6

Cistern at St. Bartholomew's Church in Camden, NJ

Water Resources Program

Cistern at Front Street Community Garden in Camden, NJ

Downspout Planters

RUTGERS

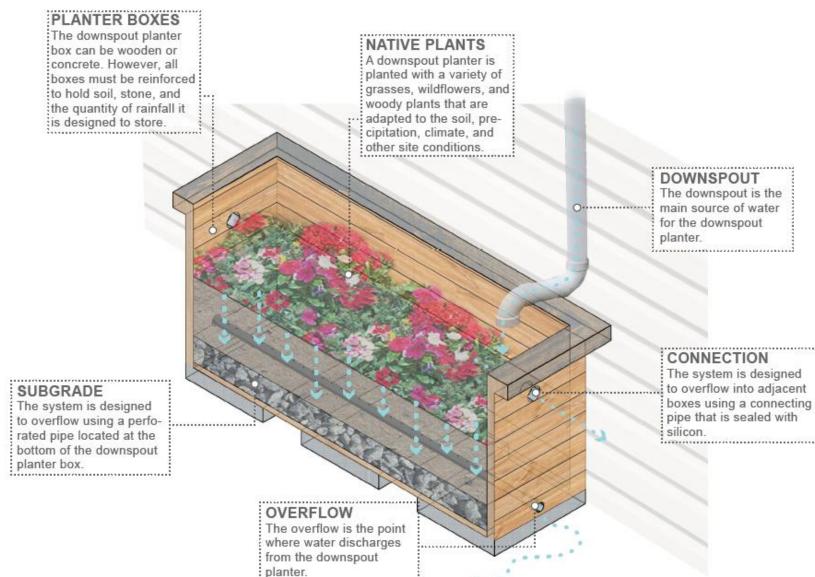
Wooden or concrete boxes with plants installed at the base of the downspout that provide an opportunity to beneficially reuse rooftop runoff.

Downspout Planter: Harvesting System

How it works:

RUTGERS

- Constructed boxes placed against buildings
- Contains stone/gravel topped with sandy compost mixture and plants
- Designed with underdrain and overflows
- Disconnects downspouts

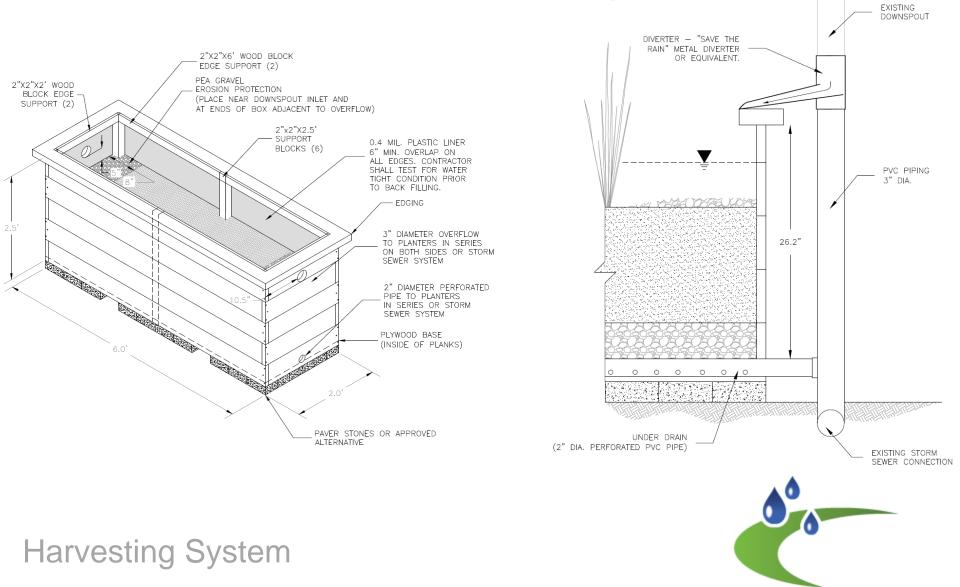

Benefits:

- Aesthetics
- Provide some rainfall storage

Downspout Planter

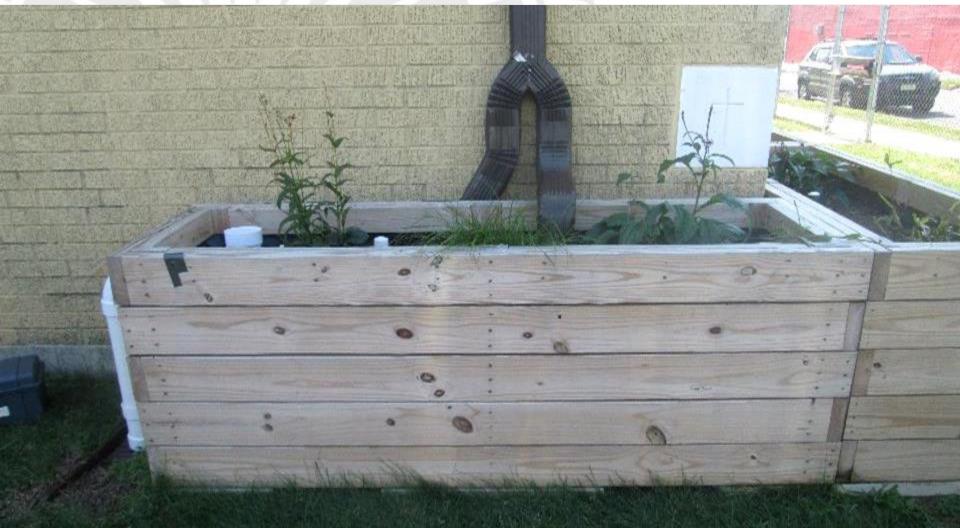
RUTGERS

Design Parameters for Downspout Planters:


- Planter box must be adequately reinforced to hold soil, stone, and plants
- Limited capacity for stormwater retention mostly infiltration
- Soil infiltration rate is 5.0 inches per hour

TGERS

• Underdrains are installed to drain the water after the storm event



Downspout Planter: Harvesting System

Water Resources Program

Downspout Planter Boxes at Acelero Learning Center in Camden, NJ Harvesting System

RUTGERS

Water Resources Program

Downspout Planter Boxes at Davis School in Camden, NJ

Stormwater Tree Pits/Street Trees

RUTGERS

Pre-manufactured concrete boxes or enhanced tree pits that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff and provide limited storage capacity.

Storage System

Stormwater Tree Pits/Street Trees

How it works:

RUTGERS

- Pervious concrete is installed to act as an additional storage system to increase the stormwater capacity treated by the system.
- Systems with low infiltration rates due to soil composition are often designed with an underdrain system to discharge the water.
- This system is often designed with conventional asphalt in areas of high traffic to prevent any damage to the system.

Benefits:

- Improved aesthetics
- Healthier trees
- Reduced heat island effect

Storage System

RUTGERS

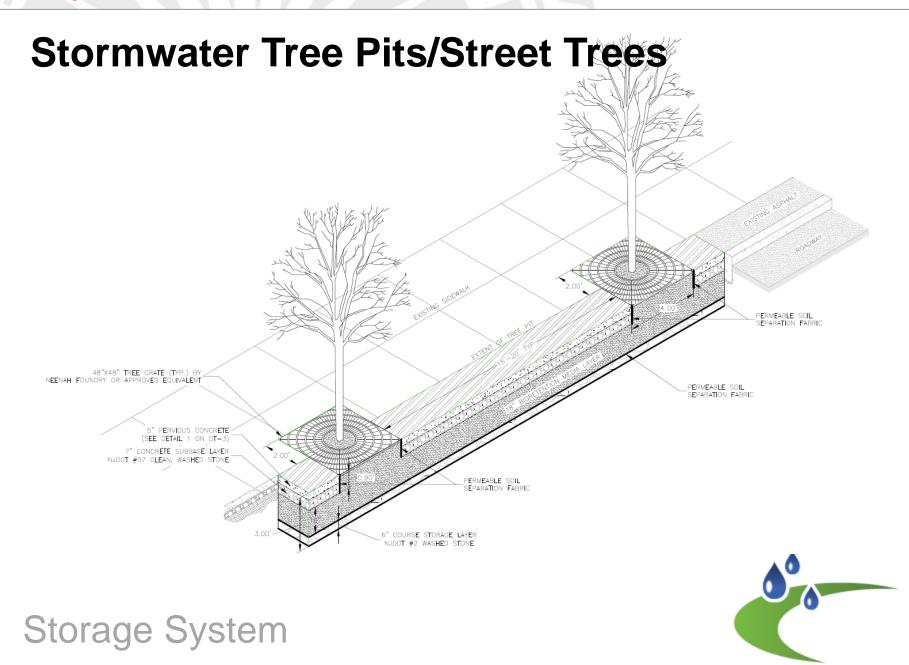
Water Resources Program

Stormwater Tree Pit/Street Trees

PERVIOUS CONCRETE Pervious concrete is installed to act as an additional storage system to increase the stormwater capacity treated by the system.

UNDERDRAIN

Systems with low infiltration rates due to soil composition are often designed with an underdrain system to discharge the water.


ASPHALT

HIIIIII See

This system is often designed with conventional asphalt in areas of high traffic to prevent any damage to the system.

Water Resources Program

Water Resources Program

Pervious Pavements

RUTGERS

These surfaces include pervious concrete, porous asphalt, interlocking concrete pavers, and grid pavers. These materials allow water to quickly pass through the material into an underlying layered system of stone that holds the water, allowing it to infiltrate into the underlying uncompacted soil.

Storage System

Pervious Pavement

How it works:

RUTGERS

- Underlying stone reservoir
- Porous asphalt and pervious concrete are manufactured without "fine" materials to allow infiltration
- Grass pavers are concrete interlocking blocks with open areas
- Ideal application for porous pavement is to treat a low traffic or overflow parking area

Benefits:

- Manage stormwater runoff, minimize site disturbance, promote groundwater recharge
- Low life cycle costs, alternative to costly traditional stormwater management methods
- Contaminant removal as water moves through layers of system
- Allows runoff to flow through the surface to an underlying storage layer

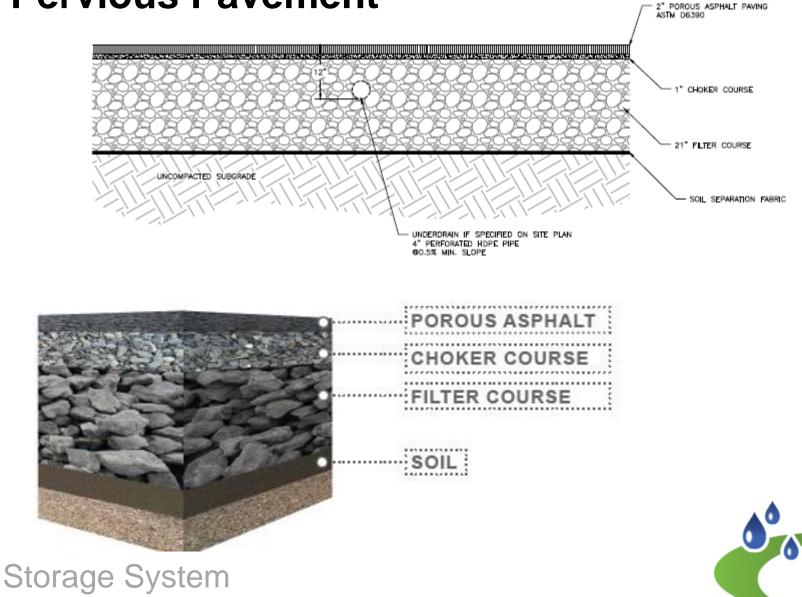
Storage System

POROUS ASPHALT It is common to design porous asphalt in the parking stalls of a parking lot. This saves money and reduces wear.

DRAINAGE AREA The drainage area of the porous asphalt system is the conventional asphalt cartway and the porous asphalt in the parking spaces. Runoff from the conventional asphalt flows into the porous asphalt parking spaces.

SUBGRADE

Porous pavements are unique because of their subgrade structure. This structure includes a layer of choker course, filter course, and soil.


UNDERDRAIN Systems with low infiltration rates due to soil composition are often designed with an underdrain system to discharge the water.

ASPHALT

This system is often designed with conventional asphalt in areas of high traffic to prevent any damage to the system.

Pervious Pavement

RUTGERS

Water Resources Program

Porous Pavement (Asphalt) at Yorkship School in Camden, NJ Storage System

Porous Pavement (Concrete) at Wiggins School in Camden, NJ

Storage System

RUTGERS

Green Infrastructure Manual for New Jersey

http://water.rutgers.edu/GreenInfrastructureGuidanceManual.html

GREEN INFRASTRUCTURE GUIDANCE MANUAL

RUTGERS

FOR NEW JERSEY

RUTGERS THE STATE UNIVERSITY OF NEW JERSEY

QUESTIONS?

Christopher C. Obropta, Ph.D., P.E.

obropta@envsci.rutgers.edu

www.water.rutgers.edu

NEW JERSEY STATE LEAGUE OF MUNICIPALITIES

E.

STORMWATER MANAGEMENT'S ROLE IN COMMUNITY HEALTH AND PROSPERITY

Ed Confair, RLA, PE

Registered Landscape Architect Professional Engineer

E&LP Associates

Engineers Landscape Architects Planners Environmental Engineers

Our mission is to create sites that inspire through the innovation of natural and built environments.

University of Pennsylvania

Lecturer in the Graduate School of Design Department of Landscape Architecture Workshop 3: Technical Site Design, Site Engineering + Water Management Summer Institute: Landscape Operations

Organizations

NJ Future Mainstreaming Green Infrastructure Task Force

Greater Philadelphia Sustainable Business Network GSI Partners

Philadelphia Community Design Collaborative

Building Industry Association of Philadelphia Green Committee

Image Credit: E&LP Associates

PRIVATE DEVELOPMENT

A ANY STATE OF IN THE CASE OF THE

RESIDENTIAL COMMUNITIES Village, Cottage, and Multi-Unit

BUSINESS & COMMERCIAL

EDUCATIONAL INSTITUTIONS Pres-school Through College

ENVIRONMENTAL & CONSERVATION Watershed Associations & Research Centers

MEDICAL & HEALTHCARE Hospitals, Clinics, Research Campuses

Image Credit: E&LP Associates

Landis Homes Retirement Community

Location:

Manheim Tonwship, Lancaster, PA

Design Team:

RGS Associates, Inc. - Landscape Architects, Civil Engineers RLPS Architects - Architect Land Studies - Envionrmental Consultants ARM Group - Geologist

Project Highlights:

40 acre expansion of 114 acre campus Six (6) Three story apartment buildings - 75 units 70 cottages LEED Certification

Green Infrastructure:

Rainwater capture and reuse Native plant palette Raingardens & bioswales Porous Asphalt Stream Corridor and Floodplain Restoration

Restoration of the adjacent stream and floodplain eliminated the need for three additional stormwater basins in the development.

Additional Information:

ASLA Stormwater Case Studies PA-DE ASLA 2008 Award Winner

EXISTING LANDIS HOMES CAMPUS

SOUTH CAMPUS EXPANSION

LANDIS HOMES RETIREMENT COMMUNITY

Image Credit: RGS Associates

JOHN

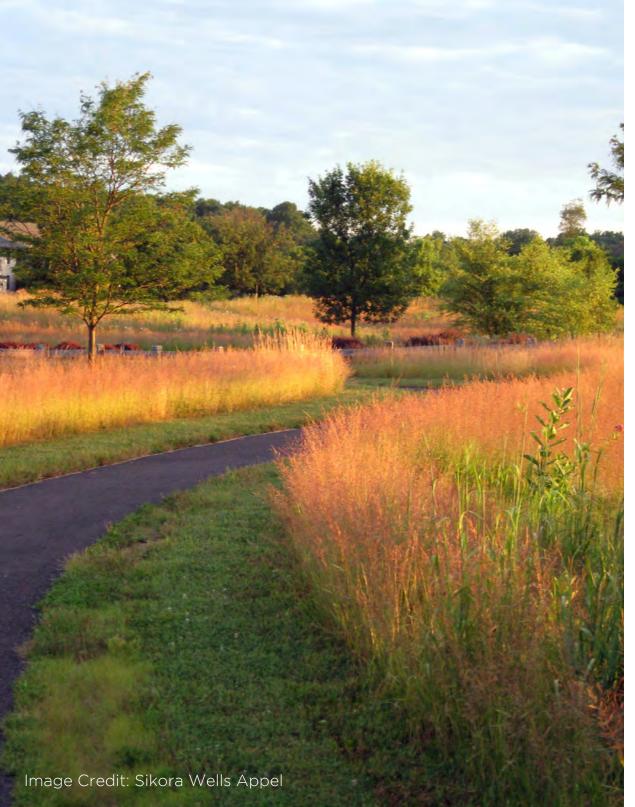
LANDIS HOMES RETIREMENT COMMUNITY NORTH CAMPUS

LANDIS HOMES RETIREMENT COMMUNITY NORTH CAMPUS STORMWATER BASINS

LANDIS HOMES RETIREMENT COMMUNITY NORTH CAMPUS STORMWATER BASINS

LANDIS HOMES RETIREMENT COMMUNITY SOUTH CAMPUS MASTER PLAN

LANDIS HOMES RETIREMENT COMMUNITY SOUTH CAMPUS MASTER PLAN


LANDIS HOMES RETIREMENT COMMUNITY RAINWATER REUSE & POROUS PAVING

Pennswood Village Retirement Community

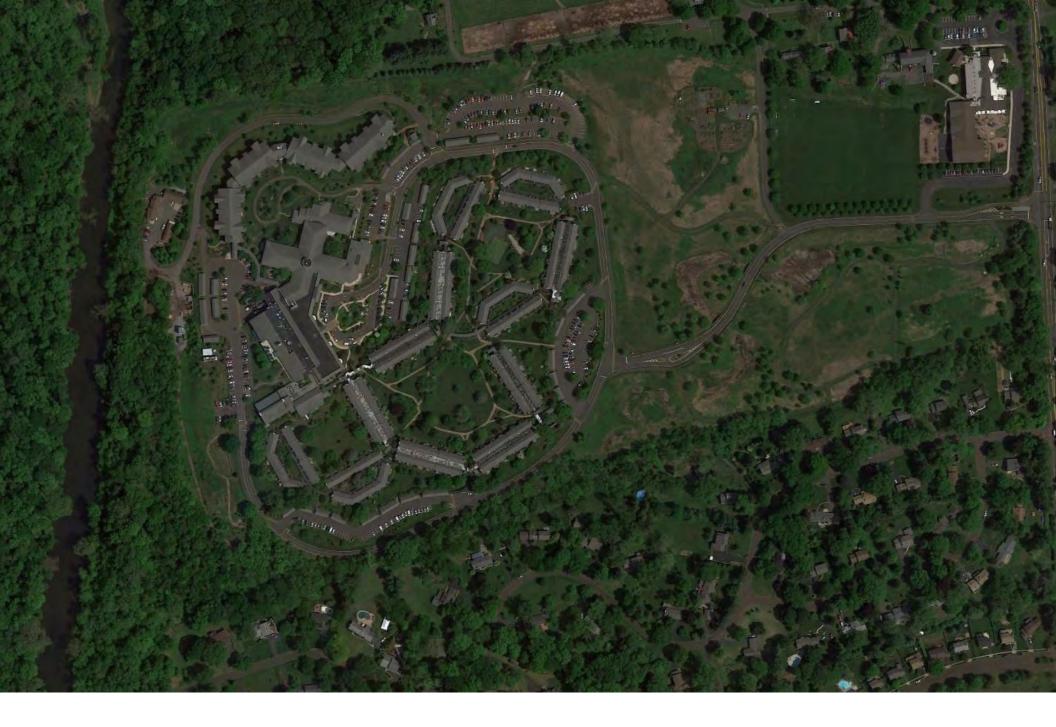
Location:

Newtown, PA

Design Team:

Sikora Wells Appel - Landscape Architects Pickering, Corts & Summerson - Civil Engineers Princeton Hydro - Hydrologists & Ecologists Mellon Biological - Wetland Scientist

Project Highlights:


82 acre quaker-directed retirement community Site open to study for surrounding schools

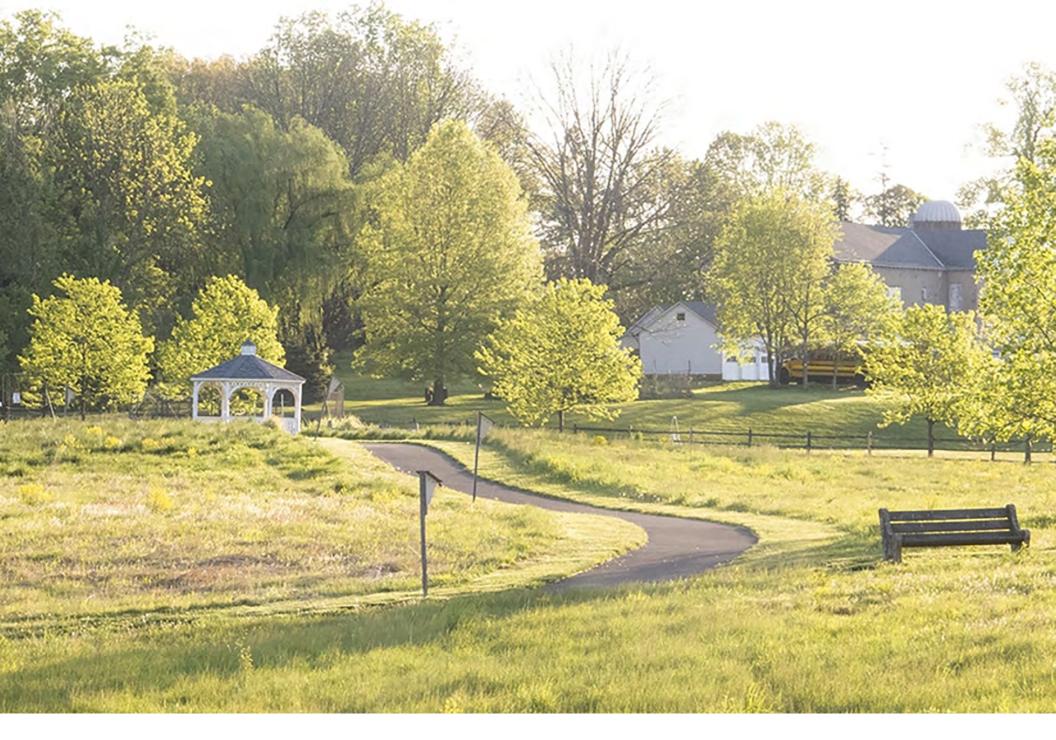
Green Infrastructure:

13 acre pollutant removal treatment chain Native plant palette Warm season grass meadow Raingardens, bioswales, wet pond

Additional Information:

ASLA Stormwater Case Studies 2003 ASLA National Merit Award Winner

PENNSWOOD VILLAGE RETIREMENT COMMUNITY AERIAL IMAGE


PENNSWOOD VILLAGE RETIREMENT COMMUNITY AERIAL IMAGE

 PENNSWOOD VILLAGE RETIREMENT COMMUNITY

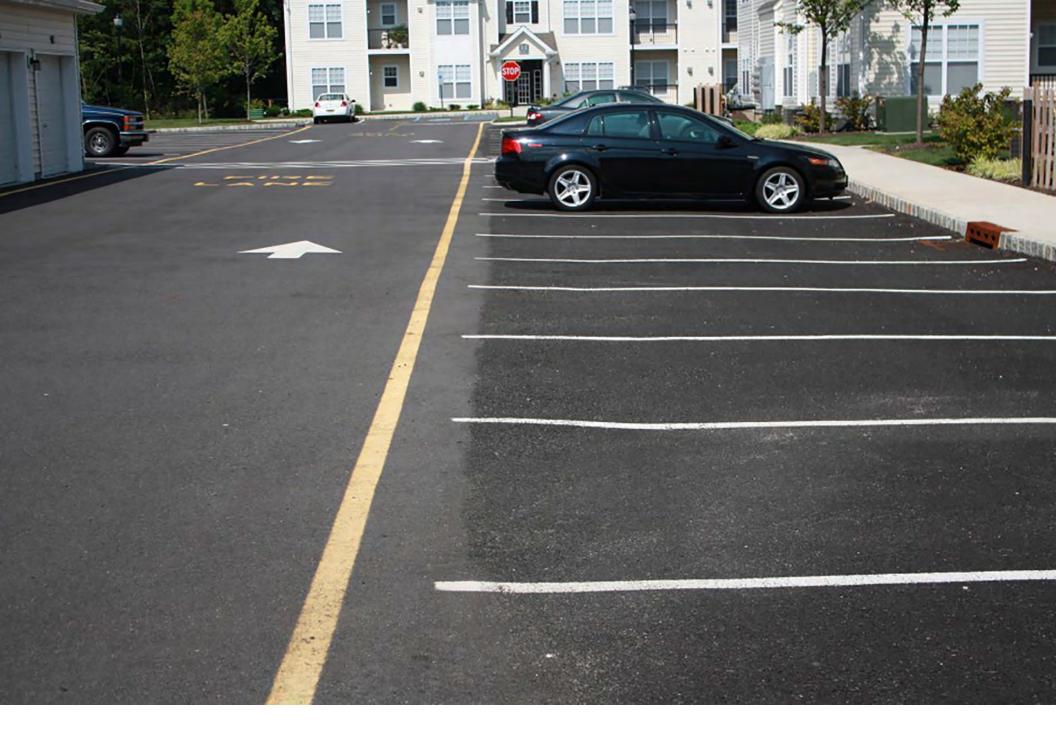
 Image Credit: Sikora Wells Appel
 MEADOW & BIORETENTION STORMWATER MANAGEMENT

 PENNSWOOD VILLAGE RETIREMENT COMMUNITY

 Image Credit: Sikora Wells Appel
 MEADOW & BIORETENTION STORMWATER MANAGEMENT

 PENNSWOOD VILLAGE RETIREMENT COMMUNITY

 Image Credit: Sikora Wells Appel
 MEADOW & BIORETENTION STORMWATER MANAGEMENT


Avalon Tinton Falls Multi-Family Apartments

Location: Borough of Tinton Falls, Monmouth County, NJ

Design Team: Maser Consulting - Civil Engineers

Project Highlights: 30 plus acre site Multi-Family Residential 216 Rental Units

Green Infrastructure: 1.5 acre wet pond Bioswales Low Impact Channel Stabilization Porous Pavement

AVALON TINTON FALLS POROUS PAVEMENT

Image Credit: Maser Consulting

AVALON TINTON FALLS WET POND

Image Credit: Maser Consulting

Lamington Road Development

Location:

Bedminster Tonwship, Somerset County, NJ

Design Team:

E&LP Associates - Civil Engineers, Landscape Architects Netta Architects - Architect

Project Highlights: 5 acre site 35 Units

Green Infrastructure:

Rainwater Reuse for Irrigation & Fountain Native plant palette Raingarden & Bioretention

LAMINGTON ROAD DEVELOPMENT MASTER PLAN

STORMWATER RETROFITS

Locations: Various

Design Team: Princeton Hydro E&LP Associates

Green Infrastructure:

Retrofitting traditional lawn basins with native bioretention plant mixes

BUSINESS & COMMERCIAL

Green Forge, Inc.

Location: Greensburg, Westmoreland County, PA

Design Team: Westmoreland Conservation District LGA Partners - Architects

Project Highlights: Adaptive reuse of industrial property for commercial

Green Infrastructure:

9,000 SF green roof 5,400 SF porous pavement 1,600 SF vegetated wall 700 SF bioretention swales/gardens

Additional Information: PA-DE 2008 ASLA Award Winner

GREEN FORGE, INC. AERIAL IMAGE

GREEN FORGE, INC. GREEN ROOF

GREEN FORGE, INC. GREEN WALL & POROUS PAVING

GREEN FORGE, INC. BIORETENTION & POROUS PAVING

Brick Farm Tavern

Location: Hopewell, NJ

Design Team: E&LP Associates - Civil Engineers & Landscape Architects

Project Highlights: Farm to Table Restaurant Working agricultural farm land

Green Infrastructure: 1/2 acre wet pond 1000 SF bioretention basins

BRICK FARM TAVERN MASTER PLAN

BRICK FARM TAVERN WET POND

New Jersey Manufacturer's Insurance Group Campus

Location: Hammonton, NJ

Design Team: Princeton Hydro - Civil Engineers

Project Highlights: 55 acre corporate campus Located in NJ Pinelands

Green Infrastructure: Bioretention basins Wet meadow basin Bioswales 120,000 gallon cistern system for rainwater capture and reuse for on site irrigation

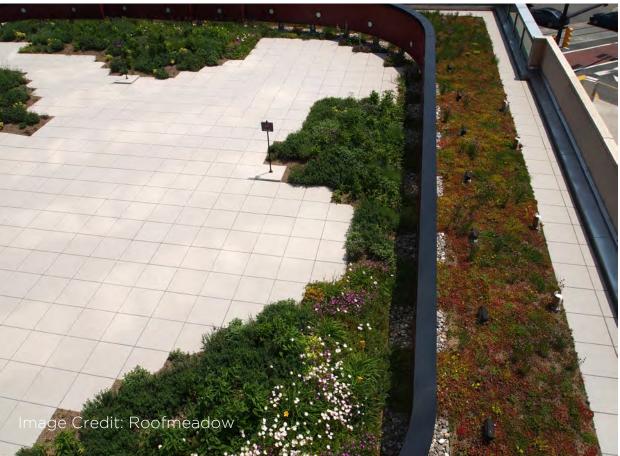
EDUCATION INSTITUTIONS

Rowan University Parking Lot Retrofit

Location: Glassboro, NJ

Design Team: Princeton Hydro - Civil Engineers

Project Highlights: Retrofit of existing parking lot with no stormwater management


Green Infrastructure: Bioswales and bioretention islands

ROWAN UNIVERSITY PARKINGN LOT BIOSWALE

Image Credit: Princeton Hydro

Rutgers University Business School

Location: New Brunswick, NJ

Design Team: Roofmeadow - Engineer Es-A Architects - Landscape Architects Epic Management - General Contractor Furbish Company - Landscape Contractor

Project Highlights: Rooftop Terrace

Green Infrastructure: Green Roof

Additional Information:

NJ Future Mainstreaming Green Infrastructure Case Study

Lea Elementary School Schoolyard Greening

Location: Philadelphia, PA

Design Team: Salt Design Studio

Project Highlights: Retrofit of existing school yard

Green Infrastructure: Porous pavement Bioswales Raingardens

Greenfield Elementary School Schoolyard Greening

Location: Philadelphia, PA

Design Team: Viridian Landscape Studio Philadelphia Water Department

Project Highlights: Retrofit of existing school yard

Green Infrastructure: Porous pavement Bioswales Raingardens

River Valley Waldorf School

Location: Upper Black Eddy, PA

Design Team: E&LP Associates - Civil Engineer & Landscape Architect

Project Highlights: Retrofit of existing school grounds

Green Infrastructure: Porous pavement Bioswales Raingardens

RIVER VALLEY WALDORF MASTER PLAN

Over The Rainbow Nursery School Children's Garden

Location: Montclair, NJ

Design Team: E&LP Associates - Landscape Architect

Project Highlights: Five Senses Children's Garden Ages infant to Pre-K

Green Infrastructure: Native palette Stumpery Raingarden Demonstration Green Roof Garden Shed

OVER THE RAINBOW NURSERY SCHOOL STUMPERY RAINGARDEN

Image Credit: Over the Rainbow Nursery School

OVER THE RAINBOW NURSERY SCHOOL OVERALL VIEW OF GARDEN

Image Credit: Over the Rainbow Nursery School

ENVIRONMENTAL AND CONSERVATION

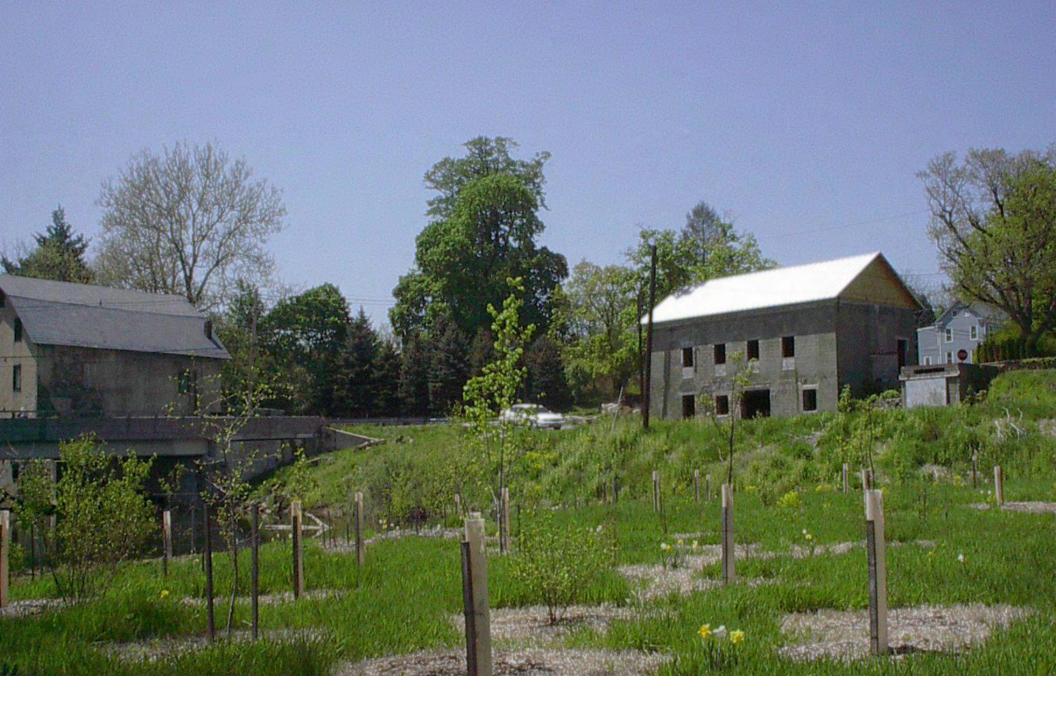
Musconetcong Watershed Association River Resource Center

Location: Asbury, NJ

Design Team: E&LP Associates - Civil Engineer Revision Architects - Architect

Project Highlights: MWA Headquarters and Environmental Education Center

LEED Platinum Certification


Green Infrastructure:

Native palette Porous pavement Geothermal Heating Riparian edge and floodplain restoration

MUSCONETCONG WATERSHED ASSOCIATION BUILDING RESTORATION

Image Credit: Bruce Livingston

MUSCONETCONG WATERSHED ASSOCIATION FLOODPLAIN AND RIPARIAN EDGE RESTORATION

Image Credit: MWA

Raritan Headwaters Association

Location:

Bedminster Township, Somerset County, NJ

Design Team:

E&LP Associates - Civil Engineer, Landscape Architect

Project Highlights:

Reimagined Entry Drive and Arrival Garden to Headquarters

Green Infrastructure:

Native palette Porous pavement Raingarden Bioswales

RARITAN HEADWATERS ASSOCIATION MASTERPLAN

Image Credit: E&LP Associates

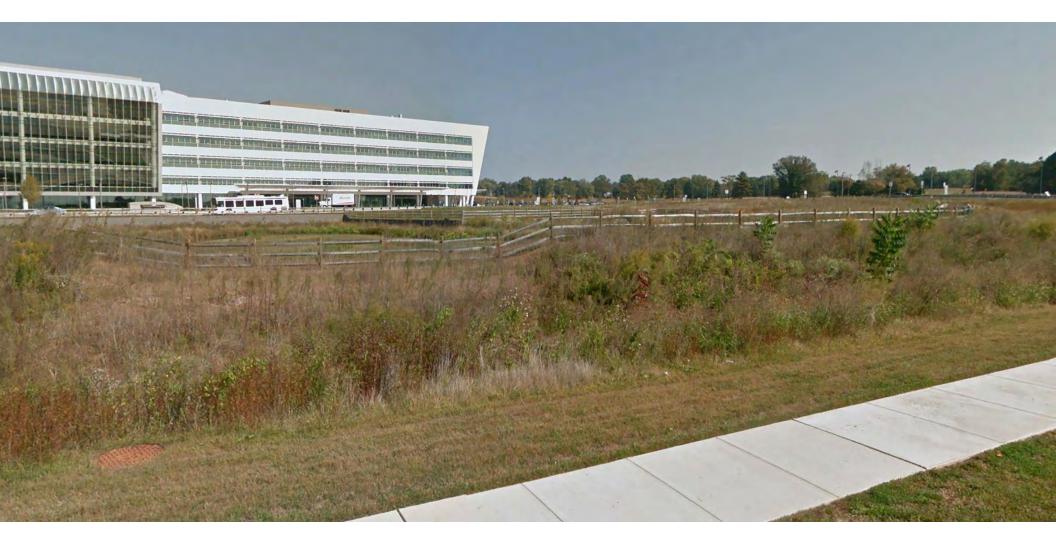
MEDICAL & HEALTHCARE

Image Credit: E&LP Associates

Einstein Medical Center Montgomery

Location: East Norriton, PA

Design Team: Sikora Wells Appel - Landscape Architect Perkins + Will Rick Paul Architects Bohler Engineering PWI Engineering Delta Fountains Gilbane Construction Hammes Company O'Donnell & Naccarato Irrigation Consulting


Project Highlights: 90 acre hospital campus LEED Certification 146 bed hospital and medical office buildings

Green Infrastructure: Native palette Constructed wetland Raingardens Bioswales 250 transplanted existing trees

EINSTEIN MEDICAL CENTER ENTRY & CONSTRUCTED WETLAND

Image Credit: Googel Earth

EINSTEIN MEDICAL CENTER ENTRY & CONSTRUCTED WETLAND

Image Credit: Googel Earth

EINSTEIN MEDICAL CENTER PARKING LOT BIOSWALES

Image Credit: Sikora Wells Appel

Waterview Center

Location: Hamilton Township, Mercer County, NJ

Design Team:


Fletcher Thompson Architecture Engineering MKW Associates - Landscape Architect

Project Highlights:

40 Acre Biotechnology Campus Two phase project still under construction

Green Infrastructure:

Native plant palette Wet Pond Raingardens Bioswales Wet Meadow

WATERVIEW CENTER AERIAL IMAGE - SITE UNDER CONSTRUCTION

Image Credit: Google Earth

WATERVIEW CENTER WET POND

Image Credit: Edward Confair

WATERVIEW CENTER BIOSWALES - UNDER CONSTRUCTION

Image Credit: Edward Confair

WATERVIEW CENTER WET MEADOW

Image Credit: Edward Confair

Stormwater Management's Role

Questions?

Sustainable Jersey Supporters

Sustainable Jersey Support

- Technical Support
 - Samantha McGraw: 609-771-2938; info@sustainablejersey.com
- Events & Trainings
 - Listed on website (Events & Training Page)
 - Ability to add your events
- Join the Sustainable Jersey Mailing List
- Attend Regional Hub Meetings in Your Area
- Follow Sustainable Jersey on Facebook, Twitter, Instagram and LinkedIn

