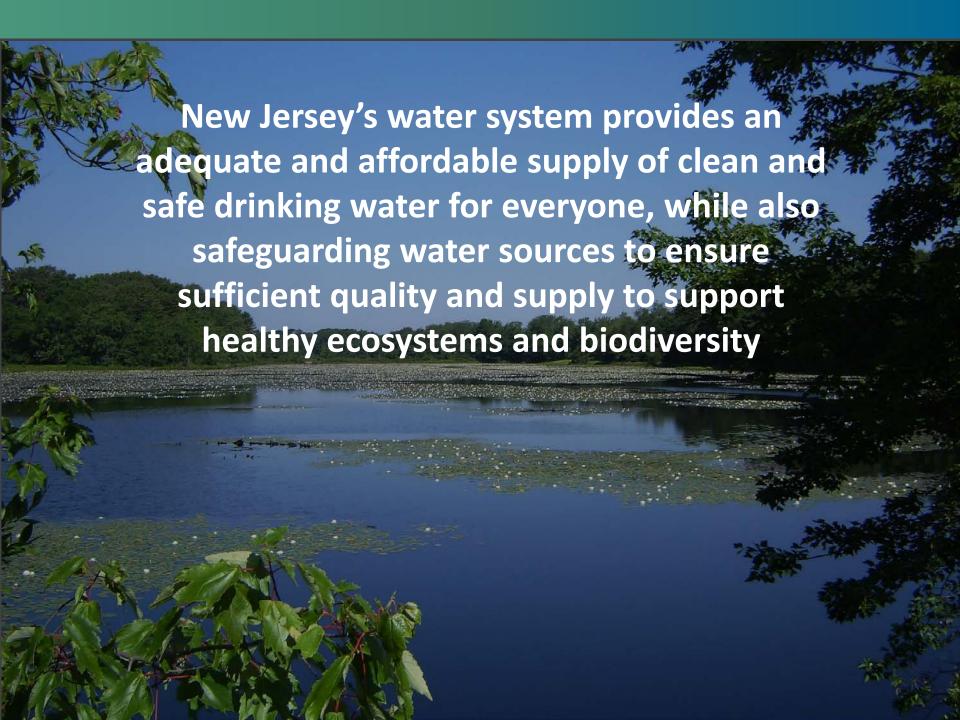
Water for our Future, Legacies from the Past

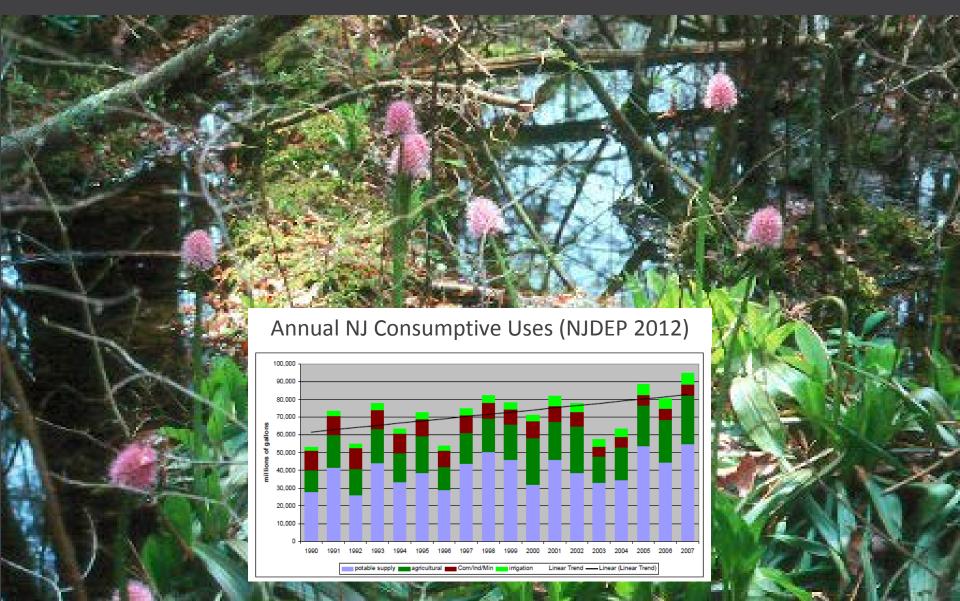
2015 New Jersey
Sustainability
SUMMIT

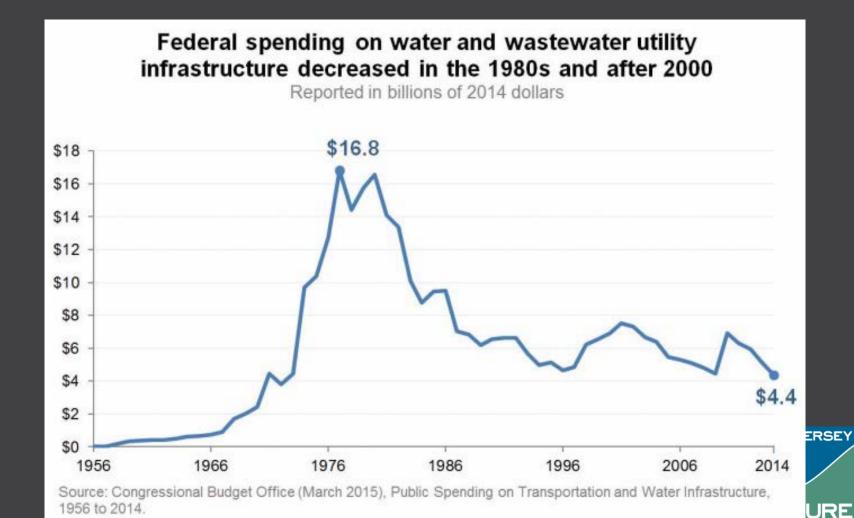
Chris Sturm
New Jersey Future

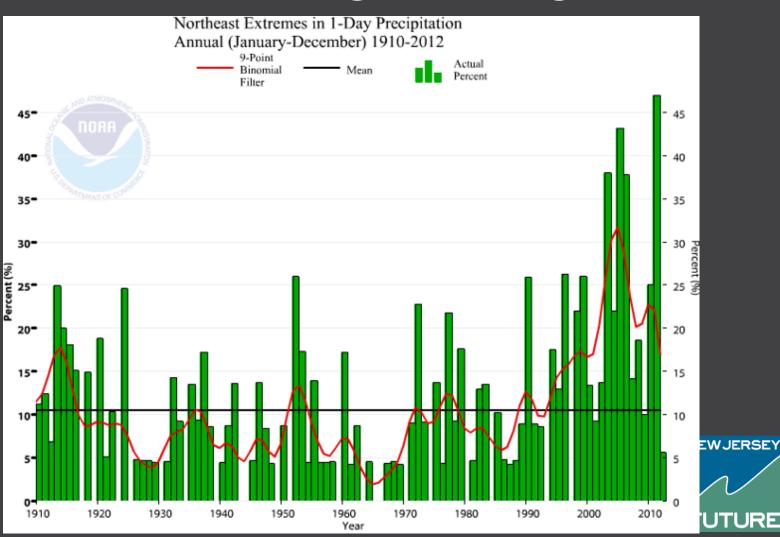


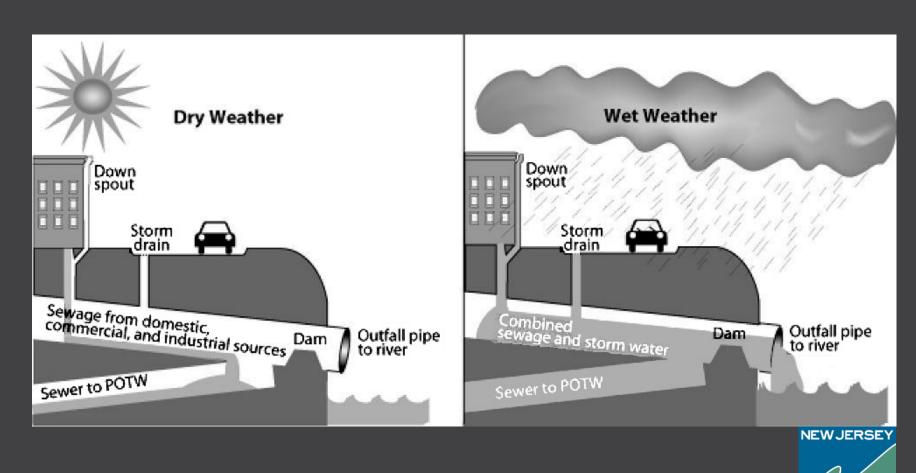
About New Jersey Future

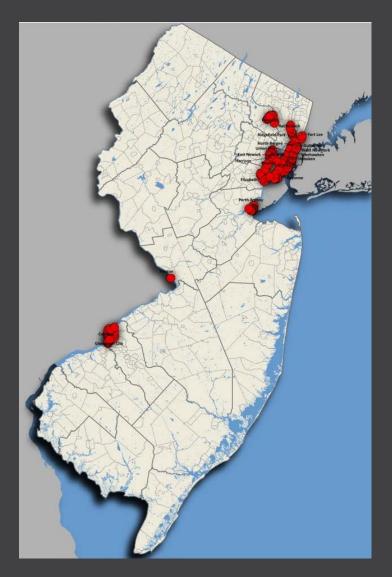

Smart Growth research, policy, advocacy and assistance


How is New Jersey Doing?




Growing Water Use and Its Impacts

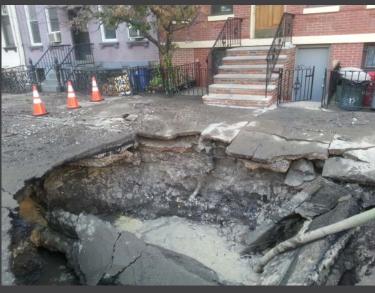

The Water System: Underfunded and Underperforming

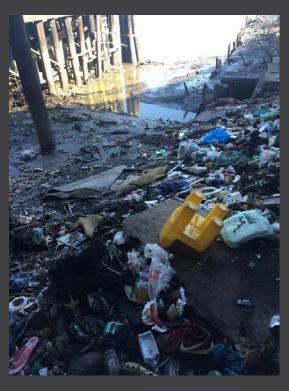

The Water System: Climate Change Challenges



Access for All New Jerseyans? Combined Sewer Overflows

21 Cities with Promise



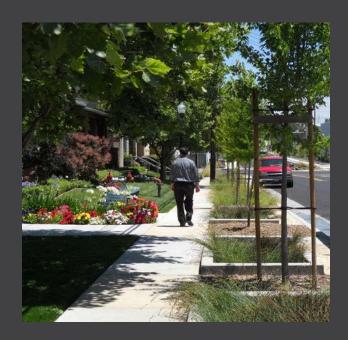


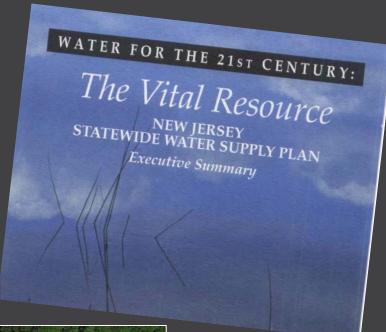
Dirty, Unsafe, Flooded, Nuisance

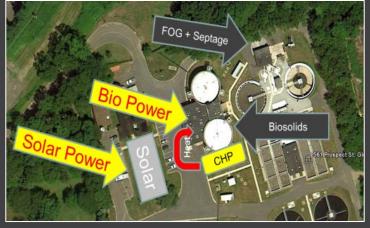
New Regulatory Requirements

- Permits issued in March
- "Long Term Control Plans" must be adopted in three to five years
- Decades-long implementation process
- Estimated cost: \$4 13
 billion

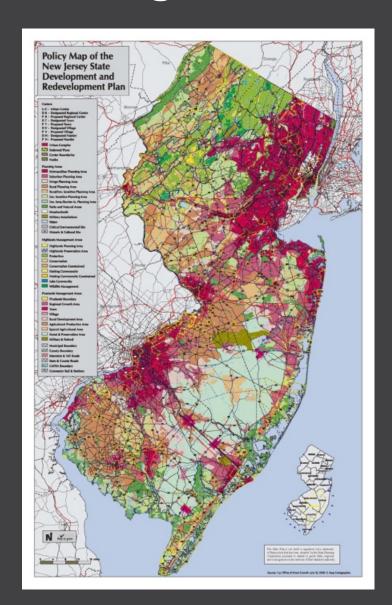
How Can We Make New Jersey's Water More Sustainable?

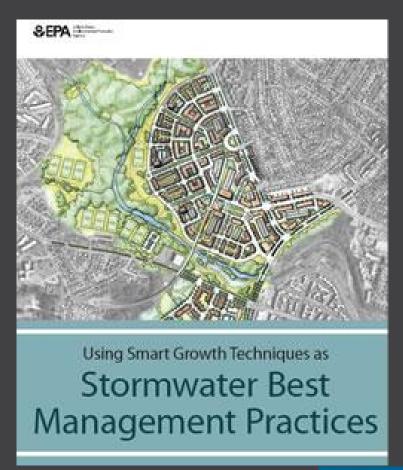

Reuse Reduce Recycle


- Water conservation for people and farms
- Fixing leaky pipes
- Reusing gray water



Treating Water as an Asset





Planning for Where and How We Grow

Institutionalizing the Value of Water And Finding New Ways to Fund It

Raising Rates, Maintaining Access

Using Networked Decision-Making to Change The Water System

Urban Water Working Group

www.njfuture.org/water

- Regulators
- Water/Sewer Utilities
- Cities
- Ratepayers
- Community Groups
- Environmental Groups
- Academia, Business

Making Green Infrastructure Standard Practice

- Engineers
- Designers and Landscape Architects
- Planners and attorneys
- Financiers

- Municipalities
- Developers

Job posting: www.njfuture.org

Thank You

Resources

- www.njfuture.org/water
- Dan Van Abs, NJ Spotlight
- Charting New Waters
- NJDEP Clean Water Council and Water Supply Advisory Board
- Together North Jersey
- Your water and sewer utility!

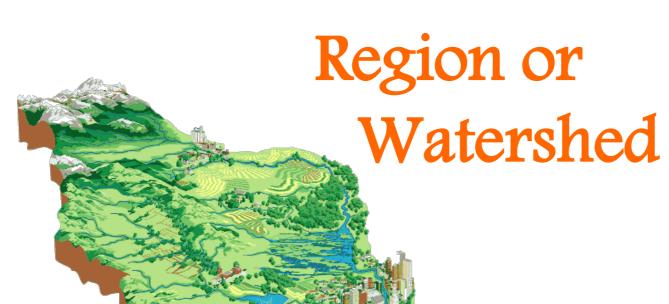
Chris Sturm

New Jersey Future

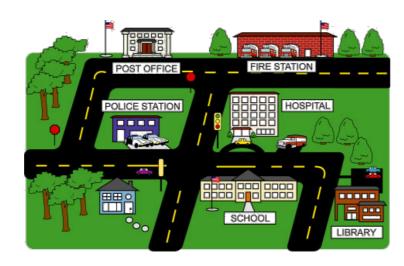
csturm@njfuture.org

609-393-0008, x114

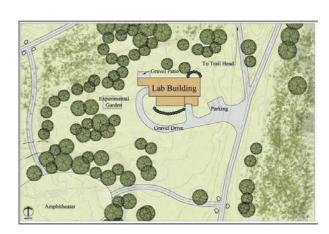
STORMWATER & GREEN INFRASTRUCTURE (& SOME WATER EFFICIENCY TOO): NATIONAL TRENDS AND NJ DEVELOPMENTS



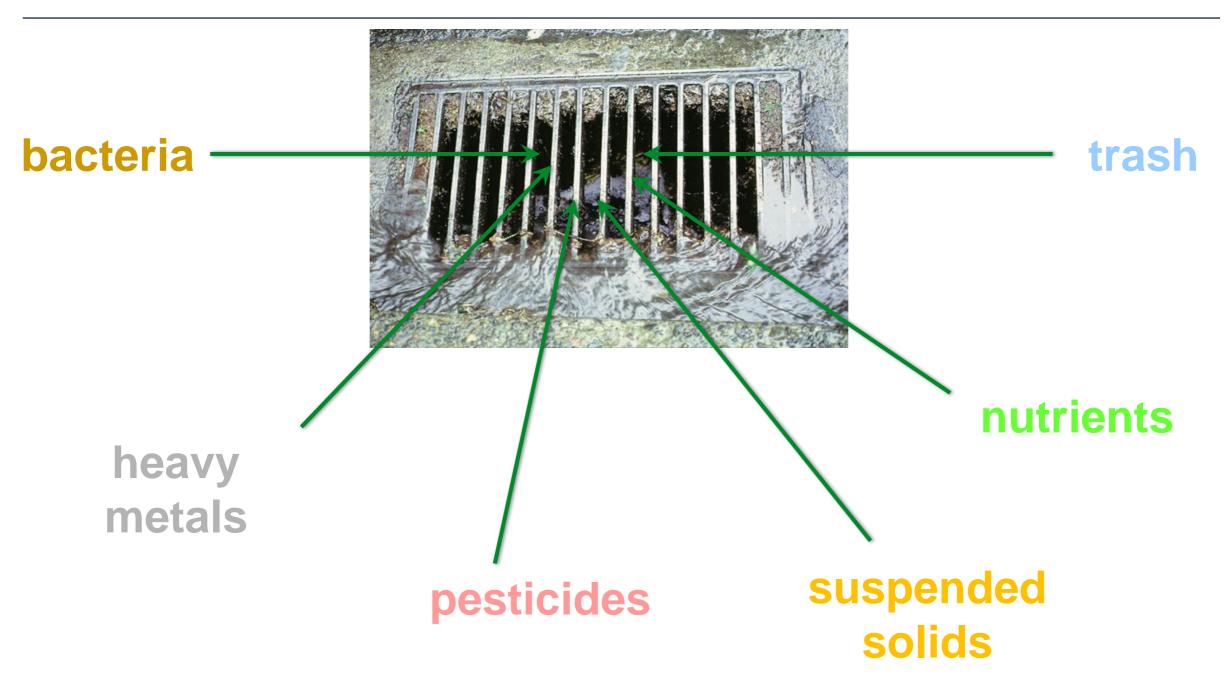
LARRY LEVINE


JUNE 10, 2015

2015 NEW JERSEY SUSTAINABILITY SUMMIT


3-Level Approach to Stormwater Management

Neighborhood


Site

Growing Problem of Stormwater

- Shifting development patterns & corresponding loss of pervious surfaces
 - Development increases:
 - Stormwater volume & velocity; pollutant loads; stream channel erosion
 - > Development decreases:
 - Health & safety of receiving waters; groundwater recharge; baseflow; stream habitat
- Aging & failing stormwater infrastructure
- Regulatory weaknesses
- Impacts from climate change and increasing population

Still Polluted, Even Without the Sewage

Urban Stormwater Runoff: Impairment

New Jersey Probable Sources Contributing to Impairments for Reporting Year 2012

Description of this table

NOTE: Click on the underlined Probable Source Group to see a list of specific state Probable Sources making up the Probable Source Group.

	Size of Assessed Waters with Probable Sources of Impairments					
Probable Source Group	Rivers and Streams (Miles)	Lakes, Reservoirs, and Ponds (Acres)	Lakes, Reservoirs, and Ponds (Acres)	Bays and Estuaries (Square Miles)	Ocean and Near Coastal (Square Miles)	
<u>Agriculture</u>	<u>10,850.2</u>	<u>19,860.7</u>	<u>19,860.7</u>	<u>141.6</u>		
Atmospheric Deposition	6,660.8	24,334.5	24,334.5	146.8		
<u>Hydromodification</u>	<u>1,056.5</u>	<u>3,918.2</u>	<u>3,918.2</u>	<u>16.2</u>		
<u>Industrial</u>	2,623.9	5,770.5	5,770.5	88.4		
Municipal Discharges/Sewage	3,034.9	<u>6,592.3</u>	<u>6,592.3</u>	9.3	<u>109.5</u>	
Natural/Wildlife	<u>527.0</u>	<u>2,507.4</u>	<u>2,507.4</u>			
<u>Unknown</u>	<u>1,361.2</u>	<u>2,642.5</u>	<u>2,642.5</u>	<u>43.3</u>		
<u>Urban-Related</u> <u>Runoff/Stormwater</u>	13,093.9	26,865.9	<u>26,865.9</u>	<u>193.7</u>	<u>371.9</u>	

According to EPA/NJDEP, 90% of assessed rivers and stream miles, 95% of assessed lake, reservoir, and pond acreage, 90% of assessed square miles of bays and estuaries, and 100% of ocean and near coastal waters in New Jersey not meeting at least one of their designated uses (such as swimming or fishing).

Urban Stormwater Runoff: Flooding

for Communities."

FEMA estimates that up to 25 percent of economic losses from flooding are the result of urban drainage, not from being located in a floodplain.

Green Infrastructure

Water quality management techniques

- green streets
- green roofs
- tree plantings
- rain gardens
- permeable pavement

© City of Toronto

Proven to help solve major urban stormwater problems and improve the health and livability of neighborhoods

Community benefits of green infrastructure

- ➤ Improving urban quality of Life
- > Beautifying neighborhoods
- >Increased property values
- > Cooling and cleansing the air

- >Lowering heating and cooling energy costs
- ➤ Recharge groundwater supplies/improve conservation
- ➤ Spurring economic revitalization
- >Creating green jobs

Benefits of green infrastructure for private property owners

- ➤ Increased rents and property values
- ➤Increased *retail sales*
- > Energy savings
- Stormwater *fee credits* and other financial incentives
- > Reduced *infrastructure costs*
- ➤ Reduced costs associated with *flooding*
- > Reduced water bills
- Increased mental *health* and worker *productivity* for office employees
- > Reduced crime

RETAIL CENTER

The figures below present the key assumptions, proposed green infrastructure property improvements, and the resulting benefits for a midsize retail center.

40,000-sq.-ft. **green roof**, installed at the end of the life of the existing conventional roof, with green covering 90 percent of surface, or 36,000 sq. ft.

50 strategically planted medium-size trees, 25 opposite west-facing walls and 25 opposite south-facing walls

Bioswales and rain gardens that manage 1 inch of runoff from 2,000 sq. ft. of adjacent impervious area

72,000-sq.-ft. permeable-pavement parking lot

Cisterns to capture runoff from 5,000 sq. ft. of roof area and use for irrigation

BUILDING ASSUMPTIONS

SIZE	40,000 sq. ft.
STORIES	1
ROOF SIZE	40,000 sq. ft.
LOT AREA	128,000 sq. ft.
PERMEABLE AREA (COVERED IN TURF)	4,000 sq. ft.
NUMBER OF STORES	15
ANNUAL RENT	\$17 per sq. ft.
ANNUAL RETAIL SALES	\$2,182,000 per store

from: NRDC, The Green Edge

RETAIL CENTER

POTENTIAL BENEFITS		NON-QUANTIFIED BENEFITS		
Energy savings due to reduced	\$3,560 Annually	Water conservation	+	
demand for heating and cooling	nand for heating and cooling		++	
Avoided costs for conventional roof replacement	\$607,750 net present value over 40-year analysis period Reduced infrastructure costs due to use of		1 /1 1	
Tax credit	\$100,000 one-time credit in year of installation	permeable pavement system	+/U	
Increased retail sales	\$1.2 MILLION per year	Reduced crime	+/U	
Stormwater fee reduction	\$14,020 Annually [projected to increase 6% per year]			
		Reduced costs associated with flooding	U	
Total present value benefits (over 40-year analysis period)	\$24,202,000 + (including \$22,963,800 in increased retail sales, which accrue to the tenants)	+ would likely increase net benefits; ++ would increase net benefits significantly; U direction of net change is uncertain.		

Present value benefits over 40-year period were estimated on the basis of a 6 percent discount rate, projected CPI, projected increase in electricity and natural gas prices in relation to CPI [based on historical relationship], and 6 percent annual increase in stormwater fees. Improvements assumed to be implemented in 2015. Avoided conventional roof replacement costs were added to net present value of other benefits. Tax credit and stormwater fee reductions are based on available credits and fee structure in Philadelphia; many other localities have similar incentives.

from: NRDC, The Green Edge

GI: What Cities Across America are Already Doing

•2006: NRDC releases "Rooftops to Rivers," outlining how cities use green infrastructure to improve stormwater management and achieve multiple benefits

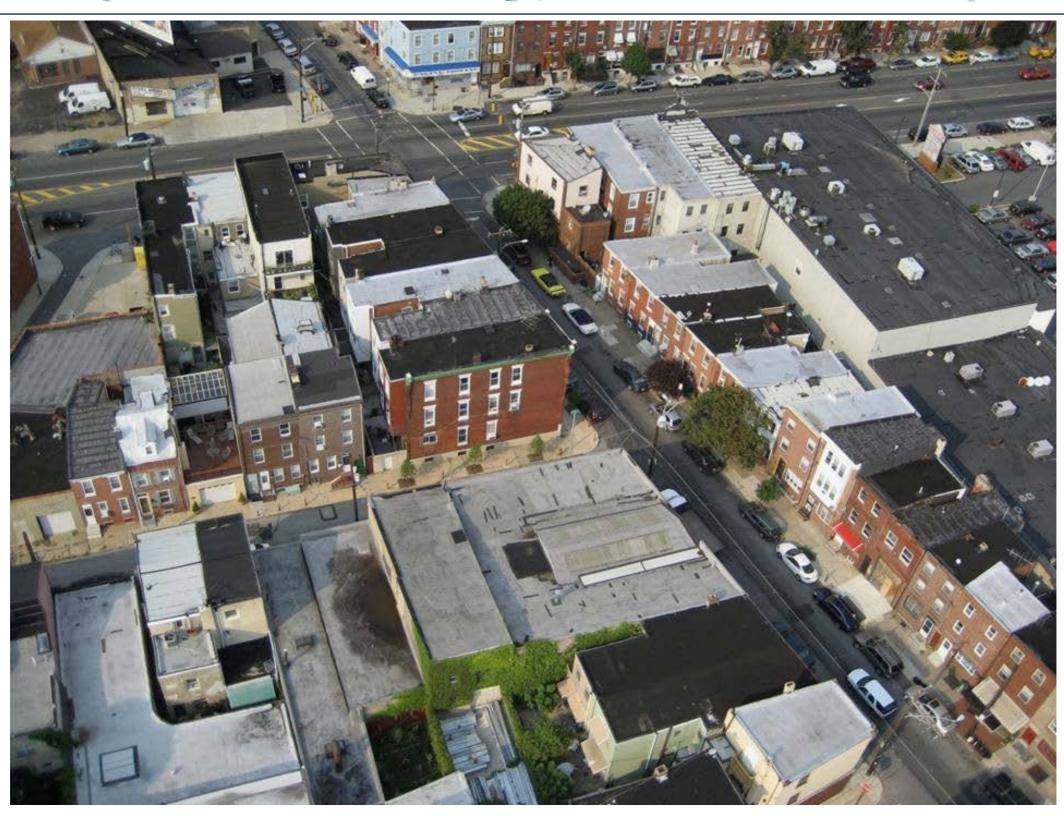
•2011 & 2013: NRDC updates and expands report, "Rooftops to Rivers II," recognizing significant increase in understanding of multiple benefits & cost-effectiveness of green

approach.

- 20 cities profiled; 14 in-depth case studies
- Key principles
 - 1. Plan
 - Retain
 - 3. Replace
 - 4. Incent
 - 5. Guide
 - 6. Dedicate
- Economic benefits of green infrastructure
- Financing options for green infrastructure
- Policy solutions at local, state & federal levels

Rooftops to Rivers II:

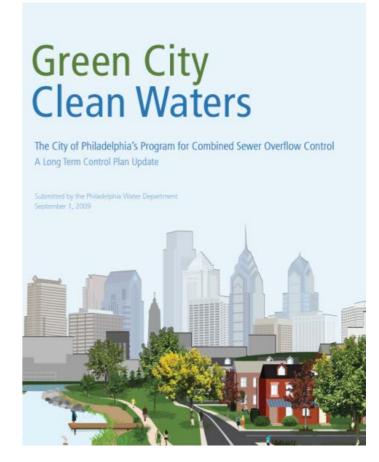
Green strategies for controlling stormwater and combined sewer overflows



AUTHORS Nosh Garrison Karen Hobbs Natural Resources Defense Council PROJECT DESIGN AND DEVELOPMEN David Beckman Jon Devine Natural Resources Defense Council Anna Berzins, Natural Resources Defense Council
Emily Clifton, Low Impact Development Center
Larry Levine, Natural Resources Defense Council
Rebecca Hammer, Natural Resources Defense Council

Philadelphia: *Green City, Clean Waters* (Before)

Philadelphia: Green City, Clean Waters (After)


Philadelphia: Green City, Clean Waters

"Green" approx. 10,000 acres over next 25 years

 Retain the first inch of stormwater over a third the city's impervious area within combined sewer area

Philadelphia expects to attain its "greened acre" goal thru combination of :

- Retrofits in public right-of-way (ROW) -- managing stormwater from streets, sidewalks, and other publicly-owned impervious areas
- 2. On-site capture standards for new & re-development
- 3. Incentives for private owners to voluntarily retrofit
 - ✓ Relatively high stormwater fees (based on impervious area) can be reduced by 80%, if owner manages first inch of stormwater onsite
 - ✓ Low-interest loan program and grant programs cover upfront capital costs of voluntary retrofits

Where do the relevant laws come from?

Federal: Clean Water Act (CWA) - Permits & Consent Orders/Consent Decrees

> State: Delegated CWA Programs + State Laws & Technical Guidance

Regional: Interstate/Intrastate Watershed/Basin Commissions

Local: Codes, Ordinances, Regulations, Guidance

Basic Clean Water Act Requirements for Stormwater Pollution

Combined Sewer Overflows (CSOs)

- Long Term Control Plans
- Must be consistent with watershed pollution limits ("TMDLs")
- Comply with water quality standards
- · Post-construction monitoring

➤ Municipal Separate Storm Sewer Systems (MS4s)

- · Reduce pollution to the "maximum extent practicable"
- Storm Water Management Plans
- Permits must be consistent with TMDLs
- Comply with water quality standards
- Monitoring

➤ SSO (Sanitary Sewer Overflow)

- Prohibition
- Reduce I/I (inflow/infiltration), etc.
- Opportunity to use EPA's "Integrated Planning Framework"
- ➤ Plus: EPA rules require permitting ("residual designation") for additional stormwater sources contributing to water quality standards violations or significantly contributing pollutants.



Waste Less, Pollute Less

NRDC ISSUE BRIEF

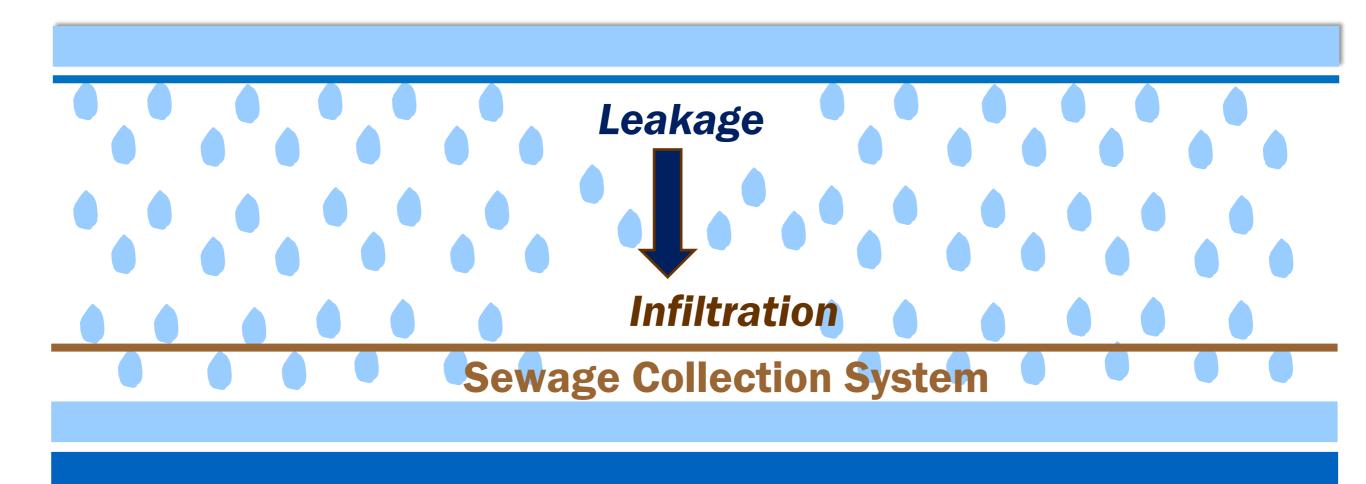
JUNE 2014 IB:14-06-A

Waste Less, Pollute Less: Using Urban Water Conservation to Advance Clean Water Act Compliance

Water Efficiency -> Clean Water Goals

Reduce Indoor Water Use:

- Reduce strain on sewage collection/treatment systems
- Improve pollution control performance (wet weather & dry weather)
- Reduce compliance costs (capital and O&M)



Reduce Outdoor Water Use & Enhance Groundwater Supply:

- Native landscapes & rainwater harvesting are "green" stormwater infrastructure
- Regional groundwater recharge facilities capture runoff

Water Efficiency → Reducing I/I

Drinking Water Distribution System

Water Efficiency -> Right-Sizing Wastewater Infrastructure

U.S. per-capita/household indoor usage declining:

- Fixture/appliance efficiency standards
- WaterSense market share

Existing/planned local conservation efforts:

- 25% of 328 drinking water utilities nationwide predict at least a 15% reduction in demand
- 6.5 % utilities predict 30% or more in reduction

Don't over-build wastewater infrastructure based on outdated demand assumptions!

THANK YOU!

QUESTIONS?

More information at: www.nrdc.org/stormwater

Larry Levine
Senior Attorney
Natural Resources Defense Council
llevine@nrdc.org

Water for our Future, Legacies from the Past

Chris Sturm, Senior Director of State Policy, NJ Future
Larry Levine, Senior Attorney, Natural Resources Defense Council
Donna Drewes, PP/AICP, Co-Director, Sustainable Jersey and
Sustainability Institute at TCNJ

2015 NEW JERSEY SUSTAINABILITY SUMMIT

Where are we at Now?

Municipal Program

- Water Conservation Ordinance
- Water Conservation Education
- Rain Gardens
- Green Roofs
- Education- Rain Barrels
- Green Design

Schools program

- Impervious Cover Assessment & Plans
- Green Design

NEW Stormwater Ordinance

- Why was the ordinance updated?
 - To reflect advances in stormwater management since 2004
- Who worked on the updates?
 - NRDC facilitated a workgroup of environmental and watershed advocates, engineers, academics, planners
- Technical Provisions

Stormwater Ordinance Updates

The three most significant revisions:

- 1. Applicability of the ordinance (major, minor and redevelopment)
- 2. Stormwater retention requirement
- 3. Technical infeasibility provision

 Note new ordinance would be preempted by Pinelands stormwater provisions

Stormwater Ordinance Updates

Applicability of the ordinance

- What is "development"?
 - Now includes land disturbing activities
- What is "major development"?
 - Now includes redevelopment
 - Size threshold lowered
- Option of including "minor development"
 - For projects under the "major" size threshold

Stormwater Ordinance Updates

Stormwater retention requirement

- Major: Retain 1.25-inch, 2-hour rainfall event on-site using green infrastructure
- Minor: For each 250 sq. ft. of impervious surface, retain 450 gallons of runoff on-site using GI
- Relationship to existing recharge, quantity, and quality requirements

Stormwater Ordinance Updates

Technical infeasibility provision

- Alternative compliance: treat 1.5x the volume not recharged or retained on-site
- What conditions could lead to infeasibility?
 - Dense development conditions
 - High industrial pollutant loadings in runoff
 - Adverse hydraulic impacts to water table

Stormwater Ordinance Updates

But wait, there's more...

- Relationship to zoning approvals and building/construction permits
- Groundwater recharge volume calculation
- Neighborhood and regional scale practices
- Multiple drainage areas
- Maintenance of stormwater practices

New action posted in July 2015

Your thoughts?

- Are we focusing on the right things?
- Are there new initiatives, programs or best practices we need to be integrating into the program?
- Have we focused on the right goals and indicators for "Water"

Feedback welcome-

Follow up survey & opportunity to participate in Webex call on June 17 from 11-12 am