

Engineering Design of Living Shorelines

Green is the New Grey NJ League of Municipalities Jon K. Miller Research Associate Professor Stevens Institute of Technology

What is a Living Shoreline?

Cleveland

Sydney

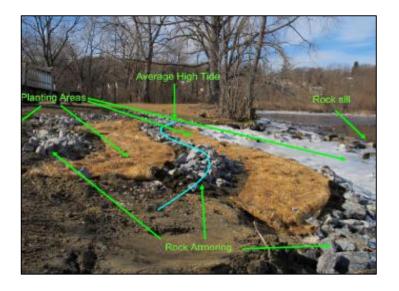
Seattle

United Kingdom

Virginia

Delaware

STEVENS INSTITUTE of **TECHNOLOGY**



Local Examples

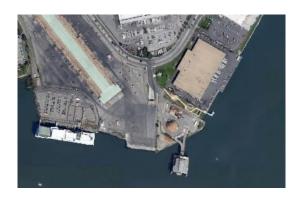
Coxsackie, NY Boat Launch

- Sill designed to mimic "natural" effect of adjacent shipwreck
- Stone toe terraces
- Contractor modified stone size
- Ice/debris/wakes play a significant role
- Lack of maintenance may be problem

Esopus Meadows Preserve

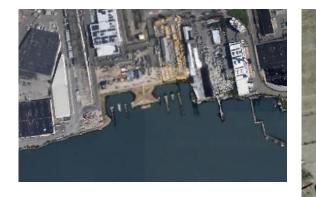
- First attempt using vegetated slope failed during spring storm (<1 yr)
- Storm-modified slope survived Irene/Lee/Sandy
- Well-maintained

Habirshaw Park, Yonkers



- Sill originally under designed (adaptive management used to correct)
- Maintenance essential
- Low slope submerged during Sandy
- Ice and wakes are a long term concern

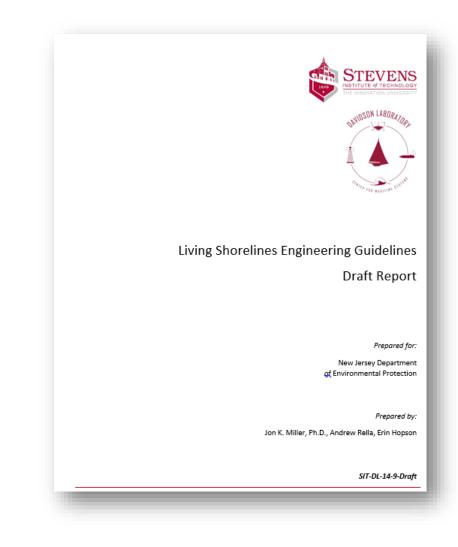
Hunts Point Landing, Bronx NY



- Designed as a public access point to the water
- Terraces used to create appropriate slopes (~1:12)
- Mix of marsh and upland vegetation
- Storm water detention incorporated
- Survived Sandy with minimal damage to structural elements or vegetation

Oak Point, Bronx NY

- Wetland creation a condition of the development permit
- Heavy upland use
- Steep slopes utilized (up to 1:2)
- Debris impact during Sandy scoured slope



Living Shorelines Engineering Guidelines Draft Report

Engineering Guidelines

- Primary Objectives
 - Provide guidance to engineers and regulators on the engineering components of living shorelines design
 - Provide a common starting place to ensure consistency with GP 24 (N.J.A.C. 7:7-6.24) – "Living Shorelines GP"
 - Reduce the number of potential failures due to poor design/construction

Approach

- 1. Identify factors relevant to living shoreline design
 - Mix of traditional, traditional evaluated non-traditionally, and non-traditional
 - Categorize as system, hydrodynamic, terrestrial, ecological, additional considerations
 - Provide guidance for selecting between alternatives
- 2. Describe approaches for determining required parameters
 - Consider different levels of rigor for different parameters and projects
- 3. Provide example of how these parameters influence design
 - Sills*, breakwaters*, joint planted revetment, reef balls*, living reef*

* Marsh creation assumed behind the structures

Suggested Design Approach

Parameter List

System Parameters

Erosion History Sea Level Rise Tidal Range

Hydrodynamic Parameters

Wind Waves Wakes Currents Ice Storm Surge

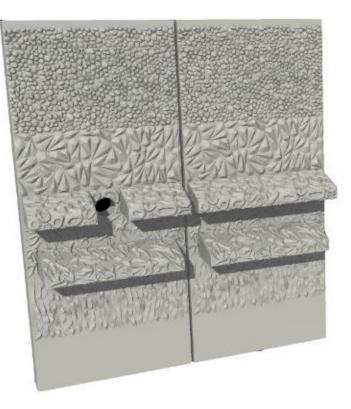
Ecological Parameters

Water Quality Soil Type Sunlight Exposure

Terrestrial Parameters

Upland Slope Shoreline Slope Width Nearshore Slope Offshore Depth Soil Bearing Capacity

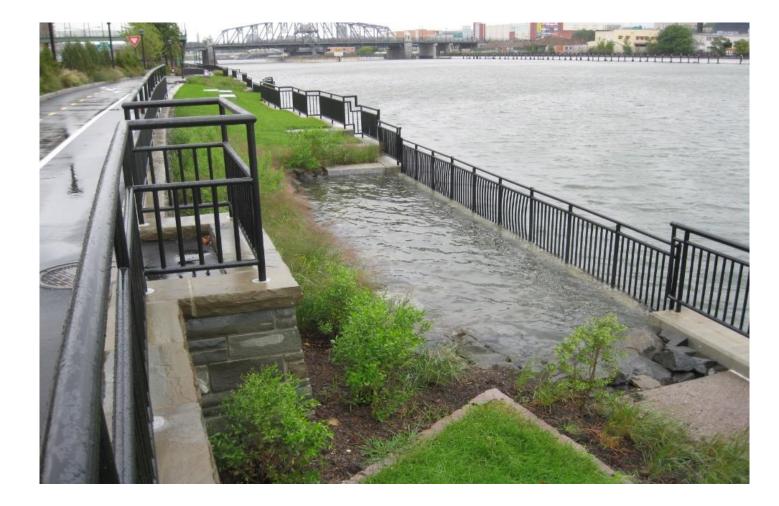
Additional Considerations


Permits/Regulatory End Effects Constructability Native/Invasive Species Debris Impact Project Monitoring

Selection Criteria

	Marsh Sill	Breakwater	Revetment	Living Reef	Reef Balls	
System Parameters						
Erosion History	Low-Med	Med-High	Med-High	Low-Med	Low-Med	
Relative Sea Level	Low-Mod	Low-High	Low-High	Low-Mod	Low-Mod	
Tidal Range	Low-Mod	Low-High	Low-High	Low-Mod	Low-Mod	

	Criterion				
Parameter	Low/Mild	Moderate	High/Steep		
	System Paramete	ers			
Erosion History	<2 <u>ft/yr</u>	2 ft/yr to 4 ft/yr	>4 <u>ft/xr</u>		
Sea Level Rise	<0.2 in/yr	0.2 in/yr to 0.4 in/yr	>0.4 in/yr		
Tidal Range	< 1.5 []	1.5 ft to 4 ft	> 4 👧		
	Hydrodynamic Parar	neters			
Waves	< 1 <u>ft</u>	1 ft to 3 ft	> 3 📆		
Wakes	< 1 <u>ft</u>	1 ft to 3 ft	> 3 👧		
Currents	< 1.25 kts	1.25 kts to 4.75 kts	>4.75 kts		
lce	< 2 in	2 in to 6 in	> 6 in		
Storm Surge	<1 <u>ft</u>	1 ft to 3 ft	>3 👧		



Eco-engineering Design Principles

Eco-engineering Design Principles

- Roughness / texture
- Irregularity
- Material composition
- Slope
- Diversity

Harlem River Designing the Edge Project

Concluding Thoughts

a 🛙 📊

Concluding Thoughts

- 1. Significant progress is being made
- 2. Local ecology should always be considered during the engineering design phase
- 3. Many options exist if we think in terms of ecological principles rather than project types
- 4. Many design tools exist and more are currently being developed
 - Engineering guidelines
 - TNC restoration explorer tool
 - PDE's contractors guide/training
- 5. Communicating project objectives is key

For More Info

Jon Miller Davidson Laboratory Stevens Institute of Technology 711 Hudson Street, Hoboken, NJ jmiller@stevens.edu Ph:201-216-8591

